We investigate properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box and add a spectrum of in-plane, large-scale, magnetic and kinetic fluctuations. We perform a set of simulations with different values of the plasma β, distributed over three orders of magnitude, from 0.01 to 10. In all cases, once turbulence is fully developed, we observe a power-law spectrum of the fluctuating magnetic field on large scales (in the inertial range) with a spectral index close to -5/3, while in the sub-ion range we observe another power-law spectrum with a spectral index systematically varying with β (from around -3.6 for small values to around -2.9 for large ones). The two ranges are separated by a spectral break around ion scales. The length scale at which this transition occurs is found to be proportional to the ion inertial length, d i , for β ≪ 1 and to the ion gyroradius, {ρ }i={d}i\sqrt{β }, for β ≫ 1, i.e., to the larger between the two scales in both the extreme regimes. For intermediate cases, i.e., β ˜ 1, a combination of the two scales is involved. We infer an empiric relation for the dependency of the spectral break on β that provides a good fit over the whole range of values. We compare our results with in situ observations in the solar wind and suggest possible explanations for such a behavior.

PLASMA BETA DEPENDENCE of the ION-SCALE SPECTRAL BREAK of SOLAR WIND TURBULENCE: HIGH-RESOLUTION 2D HYBRID SIMULATIONS / Franci, Luca; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - ELETTRONICO. - 833:(2016), pp. 0-0. [10.3847/1538-4357/833/1/91]

PLASMA BETA DEPENDENCE of the ION-SCALE SPECTRAL BREAK of SOLAR WIND TURBULENCE: HIGH-RESOLUTION 2D HYBRID SIMULATIONS

FRANCI, LUCA;LANDI, SIMONE;VERDINI, ANDREA;
2016

Abstract

We investigate properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box and add a spectrum of in-plane, large-scale, magnetic and kinetic fluctuations. We perform a set of simulations with different values of the plasma β, distributed over three orders of magnitude, from 0.01 to 10. In all cases, once turbulence is fully developed, we observe a power-law spectrum of the fluctuating magnetic field on large scales (in the inertial range) with a spectral index close to -5/3, while in the sub-ion range we observe another power-law spectrum with a spectral index systematically varying with β (from around -3.6 for small values to around -2.9 for large ones). The two ranges are separated by a spectral break around ion scales. The length scale at which this transition occurs is found to be proportional to the ion inertial length, d i , for β ≪ 1 and to the ion gyroradius, {ρ }i={d}i\sqrt{β }, for β ≫ 1, i.e., to the larger between the two scales in both the extreme regimes. For intermediate cases, i.e., β ˜ 1, a combination of the two scales is involved. We infer an empiric relation for the dependency of the spectral break on β that provides a good fit over the whole range of values. We compare our results with in situ observations in the solar wind and suggest possible explanations for such a behavior.
2016
833
0
0
Franci, Luca; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr
File in questo prodotto:
File Dimensione Formato  
Franci_2016_ApJ_833_91.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 590.82 kB
Formato Adobe PDF
590.82 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1069948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 66
social impact