We study a multimarginal optimal transportation problem in one dimension. For a sym- metric, repulsive cost function, we show that, given a minimizing transport plan, its symmetrization is induced by a cyclical map, and that the symmetric optimal plan is unique. The class of costs that we consider includes, in particular, the Coulomb cost, whose optimal transport problem is strictly related to the strong interaction limit of Density Functional Theory. In this last setting, our result justifies some qualitative properties of the potentials observed in numerical experiments.
Multimarginal Optimal Transport Maps for 1-Dimensional Repulsive Costs / Colombo, M.; De Pascale, L.; Di Marino, S.. - In: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES. - ISSN 0008-414X. - STAMPA. - 67:2(2018), pp. 350-368. [10.4153/CJM-2014-011-x]
Multimarginal Optimal Transport Maps for 1-Dimensional Repulsive Costs
DE PASCALE, LUIGI
;
2018
Abstract
We study a multimarginal optimal transportation problem in one dimension. For a sym- metric, repulsive cost function, we show that, given a minimizing transport plan, its symmetrization is induced by a cyclical map, and that the symmetric optimal plan is unique. The class of costs that we consider includes, in particular, the Coulomb cost, whose optimal transport problem is strictly related to the strong interaction limit of Density Functional Theory. In this last setting, our result justifies some qualitative properties of the potentials observed in numerical experiments.File | Dimensione | Formato | |
---|---|---|---|
ColDepMarREVISED.pdf
accesso aperto
Descrizione: Versione finale accettata
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
253.25 kB
Formato
Adobe PDF
|
253.25 kB | Adobe PDF | |
colomboJ1152_colomboJ1152.pdf
Accesso chiuso
Descrizione: Articolo apparso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
223.94 kB
Formato
Adobe PDF
|
223.94 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.