We study a multimarginal optimal transportation problem in one dimension. For a sym- metric, repulsive cost function, we show that, given a minimizing transport plan, its symmetrization is induced by a cyclical map, and that the symmetric optimal plan is unique. The class of costs that we consider includes, in particular, the Coulomb cost, whose optimal transport problem is strictly related to the strong interaction limit of Density Functional Theory. In this last setting, our result justifies some qualitative properties of the potentials observed in numerical experiments.

Multimarginal Optimal Transport Maps for 1-Dimensional Repulsive Costs / Colombo, M.; De Pascale, L.; Di Marino, S.. - In: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES. - ISSN 0008-414X. - STAMPA. - 67:2(2018), pp. 350-368. [10.4153/CJM-2014-011-x]

Multimarginal Optimal Transport Maps for 1-Dimensional Repulsive Costs

DE PASCALE, LUIGI
;
2018

Abstract

We study a multimarginal optimal transportation problem in one dimension. For a sym- metric, repulsive cost function, we show that, given a minimizing transport plan, its symmetrization is induced by a cyclical map, and that the symmetric optimal plan is unique. The class of costs that we consider includes, in particular, the Coulomb cost, whose optimal transport problem is strictly related to the strong interaction limit of Density Functional Theory. In this last setting, our result justifies some qualitative properties of the potentials observed in numerical experiments.
2018
67
350
368
Colombo, M.; De Pascale, L.; Di Marino, S.
File in questo prodotto:
File Dimensione Formato  
ColDepMarREVISED.pdf

accesso aperto

Descrizione: Versione finale accettata
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 253.25 kB
Formato Adobe PDF
253.25 kB Adobe PDF
colomboJ1152_colomboJ1152.pdf

Accesso chiuso

Descrizione: Articolo apparso
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 223.94 kB
Formato Adobe PDF
223.94 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1070980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 69
social impact