Side weirs are hydraulic structures widely used for flow control in rivers and canals. Whenever the water level rises above the side weir crest elevation, a fraction of the main flow is diverted so that the water discharge flowing downstream in the main channel is reduced. In movable bed channels, the lateral outflow may have significant interactions with the sediment transport processes affecting the side weir flow. The spilled discharge creates a reduction of the downstream sediment transport capacity with a consequent deposition in the side weir prox- imity. In addition, sediment in the main channel can be diverted into the lateral branch. To investigate these interactions, experimental data at the laboratory scale have been collected and analyzed. The increase of the spilled discharge induced by the local sediment deposition is described according to the classical De Marchi hypothesis. Furthermore, the sediment transport leaving the main channel through the lateral structure is modeled in terms of the stream power associated with the bed-shear stress. Results allow for prediction of the bed dynamics and for the development of new design criteria.
Side weir flow on a movable bed / Michelazzo, Giovanni; Minatti, Lorenzo; Paris, Enio; Solari, Luca. - In: JOURNAL OF HYDRAULIC ENGINEERING. - ISSN 0733-9429. - STAMPA. - 142:(2016), pp. 04016007-1-04016007-7. [10.1061/(ASCE)HY.1943-7900.0001128]
Side weir flow on a movable bed
MICHELAZZO, GIOVANNI;MINATTI, LORENZO;PARIS, ENIO;SOLARI, LUCA
2016
Abstract
Side weirs are hydraulic structures widely used for flow control in rivers and canals. Whenever the water level rises above the side weir crest elevation, a fraction of the main flow is diverted so that the water discharge flowing downstream in the main channel is reduced. In movable bed channels, the lateral outflow may have significant interactions with the sediment transport processes affecting the side weir flow. The spilled discharge creates a reduction of the downstream sediment transport capacity with a consequent deposition in the side weir prox- imity. In addition, sediment in the main channel can be diverted into the lateral branch. To investigate these interactions, experimental data at the laboratory scale have been collected and analyzed. The increase of the spilled discharge induced by the local sediment deposition is described according to the classical De Marchi hypothesis. Furthermore, the sediment transport leaving the main channel through the lateral structure is modeled in terms of the stream power associated with the bed-shear stress. Results allow for prediction of the bed dynamics and for the development of new design criteria.File | Dimensione | Formato | |
---|---|---|---|
Michelazzo_et_al_2016.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
325.65 kB
Formato
Adobe PDF
|
325.65 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.