This paper deals with the reversible intraframe compression of grayscale images. With reference to a spatial DPCM scheme, prediction may be accomplished in a space varying fashion following two main strategies: adaptive, i.e., with predictors recalculated at each pixel position, and classified, in which image blocks, or pixels are preliminarily labeled into a number of statistical classes, for which minimum MSE (MMSE) predictors are calculated. In this paper, a trade off between the above two strategies is proposed, which relies on a classified linear-regression prediction obtained through fuzzy techniques, and is followed by context based statistical modeling of the outcome prediction errors, to enhance entropy coding. A thorough performances comparison with the most advanced methods in the literature highlights the advantages of the fuzzy approach.

Lossless image compression by adaptive contextual encoding / Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano. - STAMPA. - 3974:(2000), pp. 654-660. (Intervento presentato al convegno Image and Video Communications and Processing 2000 tenutosi a San Jose, CA, USA, null nel 2000) [10.1117/12.383001].

Lossless image compression by adaptive contextual encoding

ALPARONE, LUCIANO;
2000

Abstract

This paper deals with the reversible intraframe compression of grayscale images. With reference to a spatial DPCM scheme, prediction may be accomplished in a space varying fashion following two main strategies: adaptive, i.e., with predictors recalculated at each pixel position, and classified, in which image blocks, or pixels are preliminarily labeled into a number of statistical classes, for which minimum MSE (MMSE) predictors are calculated. In this paper, a trade off between the above two strategies is proposed, which relies on a classified linear-regression prediction obtained through fuzzy techniques, and is followed by context based statistical modeling of the outcome prediction errors, to enhance entropy coding. A thorough performances comparison with the most advanced methods in the literature highlights the advantages of the fuzzy approach.
2000
Proceedings of SPIE - The International Society for Optical Engineering
Image and Video Communications and Processing 2000
San Jose, CA, USA, null
2000
Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1075116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact