A recently investigated approach to noise filtering in digital images consists of considering a multiresolution decomposition of the input image, and applying a different adaptive filter to each resolution layer. The wavelet decomposition has been employed for multiresolution noise- reduction, thanks to its capability to capture spatial features within frequency subbands. Conversely, Laplacian pyramids (LP) look attractive because of their full band- pass frequency property, which enables connected image structures to be represented on multiple scales. The idea of the present work is to apply an adaptive minimum mean squared error filter to the connectivity-preserving different resolution layers into which the noisy image is decomposed. For natural images, each layer of the LP is characterized by a signal-to-noise ratio (SNR) that decreases for increasing spatial resolution. Therefore, each filter may be tuned to the SNR of the related layer, so as to preserve the spatial details of the less noisy layers to a larger extent. Once all the resolutions, including the base-band, have been adaptively smoothed, a noise-filtered image version is achieved by recombining the layers of the LP. Theoretical frameworks are developed for both additive and multiplicative noise models. Experimental results of de- noising carried out on images with simulated noise and on true synthetic aperture radar images validate the potentiality of the approach in terms of both SNR improvement and visual quality

Multiresolution adaptive noise filtering based on Laplacian pyramids / Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano; Borri, Giorgio; Susini, Carlo. - STAMPA. - 2825:(1996), pp. 632-643. (Intervento presentato al convegno Wavelet Applications in Signal and Image Processing IV tenutosi a Denver, CO, usa nel 4 - 6 August 1996) [10.1117/12.255274].

Multiresolution adaptive noise filtering based on Laplacian pyramids

ALPARONE, LUCIANO;
1996

Abstract

A recently investigated approach to noise filtering in digital images consists of considering a multiresolution decomposition of the input image, and applying a different adaptive filter to each resolution layer. The wavelet decomposition has been employed for multiresolution noise- reduction, thanks to its capability to capture spatial features within frequency subbands. Conversely, Laplacian pyramids (LP) look attractive because of their full band- pass frequency property, which enables connected image structures to be represented on multiple scales. The idea of the present work is to apply an adaptive minimum mean squared error filter to the connectivity-preserving different resolution layers into which the noisy image is decomposed. For natural images, each layer of the LP is characterized by a signal-to-noise ratio (SNR) that decreases for increasing spatial resolution. Therefore, each filter may be tuned to the SNR of the related layer, so as to preserve the spatial details of the less noisy layers to a larger extent. Once all the resolutions, including the base-band, have been adaptively smoothed, a noise-filtered image version is achieved by recombining the layers of the LP. Theoretical frameworks are developed for both additive and multiplicative noise models. Experimental results of de- noising carried out on images with simulated noise and on true synthetic aperture radar images validate the potentiality of the approach in terms of both SNR improvement and visual quality
1996
Proceedings of SPIE - The International Society for Optical Engineering
Wavelet Applications in Signal and Image Processing IV
Denver, CO, usa
4 - 6 August 1996
Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano; Borri, Giorgio; Susini, Carlo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1075670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact