Introduction and Aim. Nitric oxide (NO) can trigger cardiac differentiation of embryonic stem cells (ESCs), indicating a cardiogenic function of the NO synthetizing enzyme(s) (NOS). However, the involvement of the NO/NOS downstream effectors soluble guanylyl cyclase (sGC) and cGMP activated protein kinase I (PKG-I) is less defined. Therefore, we assess the involvement of the entire NO/NOS/sGC/PKG-I pathway during cardiac differentiation process. Methods. Mouse ESCs were differentiated toward cardiac lineages by hanging drop methodology for 21 days. NOS/sGC/PKG-I pathway was studied quantifying genes, proteins, enzymatic activities, and effects of inhibition during differentiation. Percentages of beating embryoid bodies (mEBs) were evaluated as an index of cardiogenesis. Results and Discussion. Genes and protein expression of enzymes were increased during differentiation with distinctive kinetics and proteins possessed their enzymatic functions. Exogenous administered NO accelerated whereas the blockade of PKG-I strongly slowed cardiogenesis. sGC inhibition was effective only at early stages and NOS blockade ineffective. Of NOS/sGC/PKG-I pathway, PKG-I seems to play the prominent role in cardiac maturation. Conclusion. We concluded that exogenous administered NO and other pharmacological strategies able to increase the activity of PKG-I provide new tools to investigate and promote differentiation of cardiogenic precursors.

Role of Nitric Oxide, Nitric Oxide Synthase, Soluble Guanylyl Cyclase, and cGMP-Dependent Protein Kinase I in Mouse Stem Cell Cardiac Development / Spinelli, Valentina; Vona, Alessia; Corti, Francesca; Diolaiuti, Lorenzo; Zanardelli, Matteo; Sartiani, Laura; Failli, Paola. - In: STEM CELLS INTERNATIONAL. - ISSN 1687-9678. - ELETTRONICO. - 2016:(2016), pp. 1-10. [10.1155/2016/2868323]

Role of Nitric Oxide, Nitric Oxide Synthase, Soluble Guanylyl Cyclase, and cGMP-Dependent Protein Kinase I in Mouse Stem Cell Cardiac Development

SPINELLI, VALENTINA;VONA, ALESSIA;CORTI, FRANCESCA;DIOLAIUTI, LORENZO;ZANARDELLI, MATTEO;SARTIANI, LAURA;FAILLI, PAOLA
2016

Abstract

Introduction and Aim. Nitric oxide (NO) can trigger cardiac differentiation of embryonic stem cells (ESCs), indicating a cardiogenic function of the NO synthetizing enzyme(s) (NOS). However, the involvement of the NO/NOS downstream effectors soluble guanylyl cyclase (sGC) and cGMP activated protein kinase I (PKG-I) is less defined. Therefore, we assess the involvement of the entire NO/NOS/sGC/PKG-I pathway during cardiac differentiation process. Methods. Mouse ESCs were differentiated toward cardiac lineages by hanging drop methodology for 21 days. NOS/sGC/PKG-I pathway was studied quantifying genes, proteins, enzymatic activities, and effects of inhibition during differentiation. Percentages of beating embryoid bodies (mEBs) were evaluated as an index of cardiogenesis. Results and Discussion. Genes and protein expression of enzymes were increased during differentiation with distinctive kinetics and proteins possessed their enzymatic functions. Exogenous administered NO accelerated whereas the blockade of PKG-I strongly slowed cardiogenesis. sGC inhibition was effective only at early stages and NOS blockade ineffective. Of NOS/sGC/PKG-I pathway, PKG-I seems to play the prominent role in cardiac maturation. Conclusion. We concluded that exogenous administered NO and other pharmacological strategies able to increase the activity of PKG-I provide new tools to investigate and promote differentiation of cardiogenic precursors.
2016
2016
1
10
Spinelli, Valentina; Vona, Alessia; Corti, Francesca; Diolaiuti, Lorenzo; Zanardelli, Matteo; Sartiani, Laura; Failli, Paola
File in questo prodotto:
File Dimensione Formato  
1 Spinelli SCINT 2016.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1076789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact