In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) [14], by means of energy- conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schro ̈dinger equation (NLSE), of interest in many applications. We show that the use of energy- conserving methods, able to conserve a discrete counterpart of the Hamilto- nian functional, confers more robustness on the numerical solution of such a problem.

Energy-conserving methods for the nonlinear Schroedinger equation / Barletti, L.; Brugnano, L.; Frasca Caccia, G.; Iavernaro, F.. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - STAMPA. - 318:(2018), pp. 3-18. [10.1016/j.amc.2017.04.018]

Energy-conserving methods for the nonlinear Schroedinger equation

BARLETTI, LUIGI;BRUGNANO, LUIGI
;
2018

Abstract

In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) [14], by means of energy- conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schro ̈dinger equation (NLSE), of interest in many applications. We show that the use of energy- conserving methods, able to conserve a discrete counterpart of the Hamilto- nian functional, confers more robustness on the numerical solution of such a problem.
2018
318
3
18
Barletti, L.; Brugnano, L.; Frasca Caccia, G.; Iavernaro, F.
File in questo prodotto:
File Dimensione Formato  
AMC-D-16-04935R1-accepted.pdf

accesso aperto

Descrizione: Versione accettata del lavoro
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF
amc 318 (2018) 3-18.pdf

Accesso chiuso

Descrizione: lavoro pubblicato
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1079479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 56
social impact