A nonequilibrium simulation scheme extending the field of applicability of the Jarzynski equality (Jarzynski 1997 Phys. Rev. Lett. 78 2690) and Crooks fluctuation theorem (Crooks 2000 Phys. Rev. E 61 2361) is presented. The algorithm is based on steps, consisting of transition kernels, alternated to relaxation kernels, that drive the system from an initial to a final configurational domain within the space of the (externally controlled) collective coordinates. This allows the producing of nonequilibrium paths connecting two states with arbitrary shape and size in the space of the collective coordinates, giving access to their free energy difference. The method can be viewed as a generalization of the steered molecular dynamics, a technique commonly applied in simulation to calculate the potentials of mean force along an established monodimensional path in the space of the collective coordinates. A numerical validation of the method is provided by estimating the free energy differences in two model systems featured by a double-well potential. The outcomes are compared to those obtained from standard steered molecular dynamics simulations.

Nonequilibrium work theorems applied to transitions between configurational domains / Giovannelli, Edoardo; Cardini, Gianni; Volkov, Victor; Chelli, Riccardo. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - ELETTRONICO. - 123204:(2016), pp. 1-23. [10.1088/1742-5468/2016/12/123204]

Nonequilibrium work theorems applied to transitions between configurational domains

GIOVANNELLI, EDOARDO;CARDINI, GIANNI;CHELLI, RICCARDO
2016

Abstract

A nonequilibrium simulation scheme extending the field of applicability of the Jarzynski equality (Jarzynski 1997 Phys. Rev. Lett. 78 2690) and Crooks fluctuation theorem (Crooks 2000 Phys. Rev. E 61 2361) is presented. The algorithm is based on steps, consisting of transition kernels, alternated to relaxation kernels, that drive the system from an initial to a final configurational domain within the space of the (externally controlled) collective coordinates. This allows the producing of nonequilibrium paths connecting two states with arbitrary shape and size in the space of the collective coordinates, giving access to their free energy difference. The method can be viewed as a generalization of the steered molecular dynamics, a technique commonly applied in simulation to calculate the potentials of mean force along an established monodimensional path in the space of the collective coordinates. A numerical validation of the method is provided by estimating the free energy differences in two model systems featured by a double-well potential. The outcomes are compared to those obtained from standard steered molecular dynamics simulations.
2016
123204
1
23
Giovannelli, Edoardo; Cardini, Gianni; Volkov, Victor; Chelli, Riccardo
File in questo prodotto:
File Dimensione Formato  
J.Stat.Mech.-Theory.Exp.-y16_p123204.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1084349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact