As materials functionality becomes more dependent on local physical and electronic properties, the importance of optically probing matter with true nanoscale spatial resolution has increased. In this work, we mapped the influence of local trap states within individual nanowires on carrier recombination with deeply subwavelength resolution. This is achieved using multidimensional nanospectroscopic imaging based on a nano-optical device. Placed at the end of a scan probe, the device delivers optimal near-field properties, including highly efficient far-field to near-field coupling, ultralarge field enhancement, nearly background-free imaging, independence from sample requirements, and broadband operation. We performed ~40-nanometer–resolution hyperspectral imaging of indium phosphide nanowires via excitation and collection through the probes, revealing optoelectronic structure along individual nanowires that is not accessible with other methods.

Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging / Bao, Wei; Melli, M.; Caselli, N.; Riboli, F.; Wiersma, D.S.; Staffaroni, M.; Choo, H.; Ogletree, D.F.; Aloni, S.; Bokor, J.; Cabrini, S; Intonti, F.; Salmeron, M.B.; Yablonovitch, E.; Schuck, P.J.; Weber-Bargioni, A.. - In: SCIENCE. - ISSN 0036-8075. - STAMPA. - 338:(2012), pp. 1317-1321. [10.1126/science.1227977]

Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging

CASELLI, NICCOLO';RIBOLI, FRANCESCO;WIERSMA, DIEDERIK SYBOLT;INTONTI, FRANCESCA;
2012

Abstract

As materials functionality becomes more dependent on local physical and electronic properties, the importance of optically probing matter with true nanoscale spatial resolution has increased. In this work, we mapped the influence of local trap states within individual nanowires on carrier recombination with deeply subwavelength resolution. This is achieved using multidimensional nanospectroscopic imaging based on a nano-optical device. Placed at the end of a scan probe, the device delivers optimal near-field properties, including highly efficient far-field to near-field coupling, ultralarge field enhancement, nearly background-free imaging, independence from sample requirements, and broadband operation. We performed ~40-nanometer–resolution hyperspectral imaging of indium phosphide nanowires via excitation and collection through the probes, revealing optoelectronic structure along individual nanowires that is not accessible with other methods.
2012
338
1317
1321
Bao, Wei; Melli, M.; Caselli, N.; Riboli, F.; Wiersma, D.S.; Staffaroni, M.; Choo, H.; Ogletree, D.F.; Aloni, S.; Bokor, J.; Cabrini, S; Intonti, F.; Salmeron, M.B.; Yablonovitch, E.; Schuck, P.J.; Weber-Bargioni, A.
File in questo prodotto:
File Dimensione Formato  
41_science_2012.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1084660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 140
  • ???jsp.display-item.citation.isi??? 136
social impact