Secondary interactions are demonstrated to direct the stability of well-defined Ru-NHC-based heterogeneous alkene metathesis catalysts. By providing key stabilization of the active sites, higher catalytic performance is achieved. Specifically, they can be described as interactions between the metal center (active site) and the surface functionality of the support, and they have been detected by surface-enhanced H-1-Si-29 NMR spectroscopy of the ligand and P-31 solid-state NMR of the catalyst precursor. They are present only when the metal center is attached to the surface via a flexible linker (a propyl group), which allows the active site to either react with the substrate or relax, reversibly, to the surface, thus providing stability. In contrast, the use of a rigid linker (here mesitylphenyl) leads to a well-defined active site far away from the surface, stabilized only by a phosphine ligand which under reaction conditions leaves probably irreversibly, leading to faster decomposition and deactivation of the catalysts.

Evidence for metal-surface interactions and their role in stabilizing Well-defined immobilized Ru-NHC alkene metathesis catalysts / Samantaray, Manoja K.; Alauzun, Johan; Gajan, David; Kavitake, Santosh; Mehdi, Ahmad; Veyre, Laurent; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - STAMPA. - 135:(2013), pp. 3193-3199. [10.1021/ja311722k]

Evidence for metal-surface interactions and their role in stabilizing Well-defined immobilized Ru-NHC alkene metathesis catalysts

LELLI, MORENO
Investigation
;
2013

Abstract

Secondary interactions are demonstrated to direct the stability of well-defined Ru-NHC-based heterogeneous alkene metathesis catalysts. By providing key stabilization of the active sites, higher catalytic performance is achieved. Specifically, they can be described as interactions between the metal center (active site) and the surface functionality of the support, and they have been detected by surface-enhanced H-1-Si-29 NMR spectroscopy of the ligand and P-31 solid-state NMR of the catalyst precursor. They are present only when the metal center is attached to the surface via a flexible linker (a propyl group), which allows the active site to either react with the substrate or relax, reversibly, to the surface, thus providing stability. In contrast, the use of a rigid linker (here mesitylphenyl) leads to a well-defined active site far away from the surface, stabilized only by a phosphine ligand which under reaction conditions leaves probably irreversibly, leading to faster decomposition and deactivation of the catalysts.
2013
135
3193
3199
Goal 3: Good health and well-being for people
Goal 7: Affordable and clean energy
Samantaray, Manoja K.; Alauzun, Johan; Gajan, David; Kavitake, Santosh; Mehdi, Ahmad; Veyre, Laurent; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé
File in questo prodotto:
File Dimensione Formato  
ja311722k.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 401.72 kB
Formato Adobe PDF
401.72 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1086338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 88
social impact