Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, whichwill increase the risk of droughts.Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemblemodelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars andmanagement regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealingwith climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sIwas sufficient to develop a high adaptation potential, including optionsmainly based on springwheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.

Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment / Ruiz-Ramos, M; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter, R.P.. - In: AGRICULTURAL SYSTEMS. - ISSN 0308-521X. - STAMPA. - 159:(2018), pp. 260-274. [10.1016/j.agsy.2017.01.009]

Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment

FERRISE, ROBERTO;BINDI, MARCO;
2018

Abstract

Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, whichwill increase the risk of droughts.Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemblemodelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars andmanagement regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealingwith climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sIwas sufficient to develop a high adaptation potential, including optionsmainly based on springwheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.
2018
159
260
274
Ruiz-Ramos, M; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; C...espandi
File in questo prodotto:
File Dimensione Formato  
Ruiz-Ramos et al 2018_Agr Syst.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1087942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 68
social impact