We propose an M-quantile regression model for the analysis of multivariate continuous longitudinal data. M-quantile regression represents an appealing alternative to standard regression models, as it combines the robustness of quantile and the efficiency of expectile regression, detailing a picture of the response variable distribution. Discrete individual-specific random parameters are considered to account for both dependence within longitudinal profiles and association between multiple responses from the same sample unit. An extended version of the standard EM algorithm for mixed models is proposed to derive model parameter estimates.

M-quantile regression for multivariate longitudinal data / Alfò, Marco; Marino, Maria Francesca; Ranalli, Maria Giovanna; Salvati, Nicola. - ELETTRONICO. - (2016), pp. 0-0. (Intervento presentato al convegno 48th scientific meeting of the Italian Statistical Society).

M-quantile regression for multivariate longitudinal data

MARINO, MARIA FRANCESCA;
2016

Abstract

We propose an M-quantile regression model for the analysis of multivariate continuous longitudinal data. M-quantile regression represents an appealing alternative to standard regression models, as it combines the robustness of quantile and the efficiency of expectile regression, detailing a picture of the response variable distribution. Discrete individual-specific random parameters are considered to account for both dependence within longitudinal profiles and association between multiple responses from the same sample unit. An extended version of the standard EM algorithm for mixed models is proposed to derive model parameter estimates.
2016
Proceedings of the 48th scientific meeting of the Italian Statistical Society
48th scientific meeting of the Italian Statistical Society
Alfò, Marco; Marino, Maria Francesca; Ranalli, Maria Giovanna; Salvati, Nicola
File in questo prodotto:
File Dimensione Formato  
SIS2016.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 112.14 kB
Formato Adobe PDF
112.14 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1089697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact