Let W D ¹Gi j 1 i 2 Nº be a set of non-abelian finite simple groups. Set W1 D G1 and choose a faithful transitive primitive W1-set 1. Assume that we have already constructed Wn1 and chosen a transitive faithful primitive Wn1-set n1. The group Wn is then defined as Wn D Gn wrn1 Wn1. If W is the inverse limit W D lim .Wn; n/ with respect to the natural projections nW Wn ! Wn1, we prove that, for each k 2, the set of k-tuples of W that freely generate a free subgroup of rank k is comeagre in W k and its complement has Haar measure zero.

Free subgroups of inverse limits of iterated wreath products of non-abelian finite simple groups in primitive actions / Leinen, Felix; Puglisi, Orazio. - In: JOURNAL OF GROUP THEORY. - ISSN 1433-5883. - STAMPA. - 20:(2017), pp. 749-761. [10.1515/jgth-2016-0061]

Free subgroups of inverse limits of iterated wreath products of non-abelian finite simple groups in primitive actions

LEINEN, FELIX;PUGLISI, ORAZIO
2017

Abstract

Let W D ¹Gi j 1 i 2 Nº be a set of non-abelian finite simple groups. Set W1 D G1 and choose a faithful transitive primitive W1-set 1. Assume that we have already constructed Wn1 and chosen a transitive faithful primitive Wn1-set n1. The group Wn is then defined as Wn D Gn wrn1 Wn1. If W is the inverse limit W D lim .Wn; n/ with respect to the natural projections nW Wn ! Wn1, we prove that, for each k 2, the set of k-tuples of W that freely generate a free subgroup of rank k is comeagre in W k and its complement has Haar measure zero.
2017
20
749
761
Leinen, Felix; Puglisi, Orazio
File in questo prodotto:
File Dimensione Formato  
[Journal of Group Theory] Free subgroups of inverse limits of iterated wreath products of non-abelian finite simple groups in primitive actions.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 238.05 kB
Formato Adobe PDF
238.05 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1089949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact