We evaluated the diagnostic capability of a multimodal spectroscopic approach for classifying normal brain tissue and epileptogenic focal cortical dysplasia in children. We employed fluorescence spectroscopy at two excitation wavelengths (378 nm and 445 nm) and Raman spectroscopy (at 785 nm excitation) for acquiring fluorescence and Raman spectra from 10 normal brains, 16 focal cortical dysplasia specimens and 1 cortical tuber tissue sites using a custom-built multimodal optical point spectroscopic system. We used principal component analysis combined with leave-one-sample-out-cross-validation for tissue classification. The study resulted in 100% sensitivity and 90% specificity using the information obtained from fluorescence at two distinct wavelengths and Raman spectroscopy for discriminating normal brain tissue and focal cortical dysplasia. Our results demonstrate that this methodology has the potential to be applied clinically for the detection of focal cortical dysplasia and can help to improve as precise as possible surgical resection of the dysplastic tissue during surgery for epilepsy. (Figure presented.) Schematic draw of the experimental setup used for fiber-probe spectroscopy.

Multimodal fiber-probe spectroscopy allows detecting epileptogenic focal cortical dysplasia in children / Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Conti, Valerio; Buccoliero, Anna Maria; Guerrini, Renzo; Pavone, Francesco Saverio. - In: JOURNAL OF BIOPHOTONICS. - ISSN 1864-063X. - STAMPA. - 10:(2017), pp. 896-904. [10.1002/jbio.201600136]

Multimodal fiber-probe spectroscopy allows detecting epileptogenic focal cortical dysplasia in children

CICCHI, RICCARDO;Giordano, Flavio;CONTI, VALERIO;GUERRINI, RENZO;PAVONE, FRANCESCO SAVERIO
2017

Abstract

We evaluated the diagnostic capability of a multimodal spectroscopic approach for classifying normal brain tissue and epileptogenic focal cortical dysplasia in children. We employed fluorescence spectroscopy at two excitation wavelengths (378 nm and 445 nm) and Raman spectroscopy (at 785 nm excitation) for acquiring fluorescence and Raman spectra from 10 normal brains, 16 focal cortical dysplasia specimens and 1 cortical tuber tissue sites using a custom-built multimodal optical point spectroscopic system. We used principal component analysis combined with leave-one-sample-out-cross-validation for tissue classification. The study resulted in 100% sensitivity and 90% specificity using the information obtained from fluorescence at two distinct wavelengths and Raman spectroscopy for discriminating normal brain tissue and focal cortical dysplasia. Our results demonstrate that this methodology has the potential to be applied clinically for the detection of focal cortical dysplasia and can help to improve as precise as possible surgical resection of the dysplastic tissue during surgery for epilepsy. (Figure presented.) Schematic draw of the experimental setup used for fiber-probe spectroscopy.
2017
10
896
904
Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Conti, Valerio; Buccoliero, Anna Maria; Guerrini, Renzo; Pavone, Francesco Saverio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1090788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 16
social impact