Green nanostructured heterogeneous catalysts were prepared via a bottom up strategy. Designed ligands were synthesized joining covalently an electrondeficient pyrimidine residue and a scorpiand azamacrocycle. The desired molecular properties were easily transferred to nanostructured materials in two steps: first, exploiting their spontaneous chemisorption onto multi-walled carbon nanotubes (MWCNTs) via the pyrimidinic moiety in water at room temperature, then, taking advantage of the easy coordination of Pd(II) to the azamacrocycle in the same conditions. An evenly distribution of catalytic centres was obtained on the MWCNTs surface. Catalytic properties of these materials were assessed towards the Cu-free Sonogashira cross coupling, leading to significant improvements in terms of yields and reaction conditions, especially when considering the possibility to maintain yields of 90%, or above, in a feasible amount of time (2h), while working under green conditions (water, 50 °C, aerobic atmosphere). The catalysts proved to be reusable for several cycles with good yields.
Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles / Savastano, Matteo; Arranz-Mascaros, Paloma; Bazzicalupi, Carla; Clares, Maria Paz; Godino-Salido, Maria Luz; Gutierrez-Valero, Maria Dolores; Inclain, Mario; Bianchi, Antonio; Garcia-España, Enrique; Lopez-Garzon, Rafael. - In: JOURNAL OF CATALYSIS. - ISSN 0021-9517. - STAMPA. - 353:(2017), pp. 239-249. [10.1016/j.jcat.2017.07.023]
Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles
SAVASTANO, MATTEO;BAZZICALUPI, CARLA;BIANCHI, ANTONIO;
2017
Abstract
Green nanostructured heterogeneous catalysts were prepared via a bottom up strategy. Designed ligands were synthesized joining covalently an electrondeficient pyrimidine residue and a scorpiand azamacrocycle. The desired molecular properties were easily transferred to nanostructured materials in two steps: first, exploiting their spontaneous chemisorption onto multi-walled carbon nanotubes (MWCNTs) via the pyrimidinic moiety in water at room temperature, then, taking advantage of the easy coordination of Pd(II) to the azamacrocycle in the same conditions. An evenly distribution of catalytic centres was obtained on the MWCNTs surface. Catalytic properties of these materials were assessed towards the Cu-free Sonogashira cross coupling, leading to significant improvements in terms of yields and reaction conditions, especially when considering the possibility to maintain yields of 90%, or above, in a feasible amount of time (2h), while working under green conditions (water, 50 °C, aerobic atmosphere). The catalysts proved to be reusable for several cycles with good yields.File | Dimensione | Formato | |
---|---|---|---|
J. Catalysis 2017.pdf
Accesso chiuso
Descrizione: article
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Richiedi una copia |
JCAT Manuscript.pdf
accesso aperto
Descrizione: Preprint autore
Tipologia:
Altro
Licenza:
Open Access
Dimensione
738.28 kB
Formato
Adobe PDF
|
738.28 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.