A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule–electrode interface.

Engineering the magnetic coupling and anisotropy at the molecule–magnetic surface interface in molecular spintronic devices / Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivie`re, Eric; Guillot, Re´gis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihe´ry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - (2016), pp. 0-0. [10.1038/ncomms13646]

Engineering the magnetic coupling and anisotropy at the molecule–magnetic surface interface in molecular spintronic devices

TONELLI, MONICA;CIMATTI, IRENE;
2016

Abstract

A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule–electrode interface.
2016
0
0
Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivie`re, Eric; Guillot, Re´gis; D...espandi
File in questo prodotto:
File Dimensione Formato  
ncomms13646.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1095771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 44
social impact