Chou and Wang’s existence result for the L_p-Minkowski problem on S^{n−1} for p ∈ (−n, 1) and an absolutely continuous measure μ is discussed and extended to more general measures. In particular, we provide an almost optimal sufficient condition for the case p∈(0,1).
THE L_p MINKOWSKI PROBLEM FOR −n < p < 1 / Bianchi, Gabriele; Boroczky, Karoly J.; Colesanti, Andrea; Yang, Deane. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 341:(2019), pp. 493-535. [10.1016/j.aim.2018.10.032]
THE L_p MINKOWSKI PROBLEM FOR −n < p < 1
BIANCHI, GABRIELE;COLESANTI, ANDREA;
2019
Abstract
Chou and Wang’s existence result for the L_p-Minkowski problem on S^{n−1} for p ∈ (−n, 1) and an absolutely continuous measure μ is discussed and extended to more general measures. In particular, we provide an almost optimal sufficient condition for the case p∈(0,1).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
lp-chou-wang-note-ArXiv_version2.pdf
Open Access dal 02/02/2021
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
439.36 kB
Formato
Adobe PDF
|
439.36 kB | Adobe PDF | |
lp_chou-wang-note_versione_su_rivista_AdvMath.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
714.87 kB
Formato
Adobe PDF
|
714.87 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.