Chou and Wang’s existence result for the L_p-Minkowski problem on S^{n−1} for p ∈ (−n, 1) and an absolutely continuous measure μ is discussed and extended to more general measures. In particular, we provide an almost optimal sufficient condition for the case p∈(0,1).

THE L_p MINKOWSKI PROBLEM FOR −n < p < 1 / Bianchi, Gabriele; Boroczky, Karoly J.; Colesanti, Andrea; Yang, Deane. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 341:(2019), pp. 493-535. [10.1016/j.aim.2018.10.032]

THE L_p MINKOWSKI PROBLEM FOR −n < p < 1

BIANCHI, GABRIELE;COLESANTI, ANDREA;
2019

Abstract

Chou and Wang’s existence result for the L_p-Minkowski problem on S^{n−1} for p ∈ (−n, 1) and an absolutely continuous measure μ is discussed and extended to more general measures. In particular, we provide an almost optimal sufficient condition for the case p∈(0,1).
2019
341
493
535
Bianchi, Gabriele; Boroczky, Karoly J.; Colesanti, Andrea; Yang, Deane
File in questo prodotto:
File Dimensione Formato  
lp-chou-wang-note-ArXiv_version2.pdf

Open Access dal 02/02/2021

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 439.36 kB
Formato Adobe PDF
439.36 kB Adobe PDF
lp_chou-wang-note_versione_su_rivista_AdvMath.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 714.87 kB
Formato Adobe PDF
714.87 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1100190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact