We study real-valued, continuous and translation invariant valuations defined on the space of quasi-concave functions of N variables. In particular, we prove a homogeneous decomposition theorem of McMullen type, and we find a representation formula for those valuations which are N-homogeneous. Moreover, we introduce the notion of Klain's functions for these type of valuations.
Translation invariant valuations on quasi-concave functions / Colesanti, Andrea; Lombardi, Nico; Lukas, Parapatits. - In: STUDIA MATHEMATICA. - ISSN 0039-3223. - STAMPA. - 243:(2018), pp. 79-99. [10.4064/sm170323-7-7]
Translation invariant valuations on quasi-concave functions
Andrea Colesanti;Nico Lombardi;
2018
Abstract
We study real-valued, continuous and translation invariant valuations defined on the space of quasi-concave functions of N variables. In particular, we prove a homogeneous decomposition theorem of McMullen type, and we find a representation formula for those valuations which are N-homogeneous. Moreover, we introduce the notion of Klain's functions for these type of valuations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Translation invariant valuations on quasi-concave functions.pdf
Accesso chiuso
Descrizione: Articolo
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
305.51 kB
Formato
Adobe PDF
|
305.51 kB | Adobe PDF | Richiedi una copia |
cdoi-sm170323-7-7.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
337.94 kB
Formato
Adobe PDF
|
337.94 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.