Level 3 of the ERTMS/ETCS improves the capacity of railways by replacing fixed-block signalling, which prevents a train to enter a block occupied by another train, with moving block signalling, which allows a train to proceed as long as it receives radio messages ensuring that the track ahead is clear of other trains. If messages are lost, a train must stop for safety reasons within a given deadline, even though the track ahead is clear, making the availability of the communication link crucial for successful operation. We combine analytic evaluation of failures due to burst noise and connection losses with numerical solution of a non-Markovian model representing also failures due to handovers between radio stations. In so doing, we show that handovers experienced by a pair of chasing trains periodically affect the availability of the radio link, making behavior of the overall communication system recurrent over the hyper-period of periodic message releases and periodic arrivals at cell borders. As a notable aspect, non-Markovian transient analysis within two hyper-periods is sufficient to derive an upper bound on the first-passage time distribution to an emergency brake, permitting to achieve a trade-off between railway throughput and stop probability. A sensitivity analysis is performed with respect to train speed and headway distance, permitting to gain insight into the consequences of system-level design choices.

Performability evaluation of the ERTMS/ETCS - Level 3 / Biagi, Marco; Carnevali, Laura; Paolieri, Marco; Vicario, Enrico. - In: TRANSPORTATION RESEARCH. PART C, EMERGING TECHNOLOGIES. - ISSN 0968-090X. - ELETTRONICO. - 82:(2017), pp. 314-336. [10.1016/j.trc.2017.07.002]

Performability evaluation of the ERTMS/ETCS - Level 3

Biagi, Marco;Carnevali, Laura;Paolieri, Marco;Vicario, Enrico
2017

Abstract

Level 3 of the ERTMS/ETCS improves the capacity of railways by replacing fixed-block signalling, which prevents a train to enter a block occupied by another train, with moving block signalling, which allows a train to proceed as long as it receives radio messages ensuring that the track ahead is clear of other trains. If messages are lost, a train must stop for safety reasons within a given deadline, even though the track ahead is clear, making the availability of the communication link crucial for successful operation. We combine analytic evaluation of failures due to burst noise and connection losses with numerical solution of a non-Markovian model representing also failures due to handovers between radio stations. In so doing, we show that handovers experienced by a pair of chasing trains periodically affect the availability of the radio link, making behavior of the overall communication system recurrent over the hyper-period of periodic message releases and periodic arrivals at cell borders. As a notable aspect, non-Markovian transient analysis within two hyper-periods is sufficient to derive an upper bound on the first-passage time distribution to an emergency brake, permitting to achieve a trade-off between railway throughput and stop probability. A sensitivity analysis is performed with respect to train speed and headway distance, permitting to gain insight into the consequences of system-level design choices.
2017
82
314
336
Biagi, Marco; Carnevali, Laura; Paolieri, Marco; Vicario, Enrico
File in questo prodotto:
File Dimensione Formato  
17_BCPV_TRPC17.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1104229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 17
social impact