In millimeter and submillimeter-wave radiometric imaging systems, a persistent goal is the increase in the speed of acquisition of the image while maintaining a high sensitivity. Typically, the highest sensitivity is achieved by cryogenically cooling the detectors, specifically in astronomical applications. However, for the purpose of low-cost imaging applications, it is desirable to operate at room temperature. Without cryogenically cooling, the electronic noise introduced by the detectors becomes dominant, making the detectors less sensitive. Resorting to detection architectures containing amplification circuitry might be impractical for implementation in large focal plane arrays (FPAs) fabricated in integrated technologies. This contribution derives the focal plane architecture that maximizes the imaging speed of radiometers operating at room temperature without using any amplification circuitry. It is shown that in such scenario a practical image acquisition speed can still be achieved when a very broad portion of the THz-band is exploited. Ultimately, the imaging speed is maximized when the FPA is undersampled, implying a tradeoff in the size of the optics. The analysis is substantiated by a case study with recently developed wideband leaky lens antenna feeds operating from 200 to 600 GHz.

THz Imaging Using Uncooled Wideband Direct Detection Focal Plane Arrays / van Berkel, Sven; Yurduseven, Ozan; Freni, Angelo; Llombart, Nuria; Neto, Andrea. - In: IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY. - ISSN 2156-342X. - STAMPA. - 7:(2017), pp. 481-492. [10.1109/TTHZ.2017.2736338]

THz Imaging Using Uncooled Wideband Direct Detection Focal Plane Arrays

Freni, Angelo;Neto, Andrea
2017

Abstract

In millimeter and submillimeter-wave radiometric imaging systems, a persistent goal is the increase in the speed of acquisition of the image while maintaining a high sensitivity. Typically, the highest sensitivity is achieved by cryogenically cooling the detectors, specifically in astronomical applications. However, for the purpose of low-cost imaging applications, it is desirable to operate at room temperature. Without cryogenically cooling, the electronic noise introduced by the detectors becomes dominant, making the detectors less sensitive. Resorting to detection architectures containing amplification circuitry might be impractical for implementation in large focal plane arrays (FPAs) fabricated in integrated technologies. This contribution derives the focal plane architecture that maximizes the imaging speed of radiometers operating at room temperature without using any amplification circuitry. It is shown that in such scenario a practical image acquisition speed can still be achieved when a very broad portion of the THz-band is exploited. Ultimately, the imaging speed is maximized when the FPA is undersampled, implying a tradeoff in the size of the optics. The analysis is substantiated by a case study with recently developed wideband leaky lens antenna feeds operating from 200 to 600 GHz.
2017
7
481
492
van Berkel, Sven; Yurduseven, Ozan; Freni, Angelo; Llombart, Nuria; Neto, Andrea
File in questo prodotto:
File Dimensione Formato  
THz_Imaging_Using_Uncooled_Wideband_Direct_Detection_Focal_Plane_Arrays.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1105330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact