A structure M is pregeometric if the algebraic closure is a pregeometry in all structures elementarily equivalent to M. We define a generalisation: structures with an existential matroid. The main examples are superstable groups of Lascar U-rank a power of ω and d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding an integral domain, while not pregeometric in general, do have a unique existential matroid. Generalising previous results by van den Dries, we define dense elementary pairs of structures expanding an integral domain and with an existential matroid, and we show that the corresponding theories have natural completions, whose models also have a unique existential matroid. We also extend the above result to dense tuples of structures.

Dimensions, matroids, and dense pairs of first-order structures / Fornasiero, Antongiulio. - In: ANNALS OF PURE AND APPLIED LOGIC. - ISSN 0168-0072. - STAMPA. - 162:(2011), pp. 514-543. [10.1016/j.apal.2011.01.003]

Dimensions, matroids, and dense pairs of first-order structures

Fornasiero, Antongiulio
2011

Abstract

A structure M is pregeometric if the algebraic closure is a pregeometry in all structures elementarily equivalent to M. We define a generalisation: structures with an existential matroid. The main examples are superstable groups of Lascar U-rank a power of ω and d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding an integral domain, while not pregeometric in general, do have a unique existential matroid. Generalising previous results by van den Dries, we define dense elementary pairs of structures expanding an integral domain and with an existential matroid, and we show that the corresponding theories have natural completions, whose models also have a unique existential matroid. We also extend the above result to dense tuples of structures.
2011
162
514
543
Fornasiero, Antongiulio
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168007211000042-main.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 484.28 kB
Formato Adobe PDF
484.28 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1108480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact