An expansion of a definably complete field either defines a discrete subring, or the image of every definable discrete set under every definable map is nowhere dense. As an application we show a definable version of Lebesgue’s differentiation theorem.
A fundamental dichotomy for definably complete expansions of ordered fields / Fornasiero, Antongiulio; Hieronymi, Philipp. - In: THE JOURNAL OF SYMBOLIC LOGIC. - ISSN 0022-4812. - STAMPA. - 80:(2015), pp. 1091-1115. [10.1017/jsl.2014.10]
A fundamental dichotomy for definably complete expansions of ordered fields
Fornasiero, Antongiulio;
2015
Abstract
An expansion of a definably complete field either defines a discrete subring, or the image of every definable discrete set under every definable map is nowhere dense. As an application we show a definable version of Lebesgue’s differentiation theorem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
div-class-title-a-fundamental-dichotomy-for-definably-complete-expansions-of-ordered-fields-div.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
DRM non definito
Dimensione
299.13 kB
Formato
Adobe PDF
|
299.13 kB | Adobe PDF | Visualizza/Apri |
1305.4767.pdf
accesso aperto
Descrizione: Versione ArXiv
Tipologia:
Altro
Licenza:
Open Access
Dimensione
299.68 kB
Formato
Adobe PDF
|
299.68 kB | Adobe PDF | Visualizza/Apri |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.