A first-order expansion of the R-vector space structure on R does not define every compact subset of every Rn if and only if topological and Hausdorff dimension coincide on all closed definable sets. Equivalently, if A⊆Rk is closed and the Hausdorff dimension of A exceeds the topological dimension of A, then every compact subset of every Rn can be constructed from A using finitely many boolean operations, cartesian products, and linear operations. The same statement fails when Hausdorff dimension is replaced by packing dimension.

How to avoid a compact set / Fornasiero, Antongiulio; Hieronymi, Philipp; Walsberg, Erik. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 317:(2017), pp. 758-785. [10.1016/j.aim.2017.07.011]

How to avoid a compact set

Fornasiero, Antongiulio;
2017

Abstract

A first-order expansion of the R-vector space structure on R does not define every compact subset of every Rn if and only if topological and Hausdorff dimension coincide on all closed definable sets. Equivalently, if A⊆Rk is closed and the Hausdorff dimension of A exceeds the topological dimension of A, then every compact subset of every Rn can be constructed from A using finitely many boolean operations, cartesian products, and linear operations. The same statement fails when Hausdorff dimension is replaced by packing dimension.
2017
317
758
785
Fornasiero, Antongiulio; Hieronymi, Philipp; Walsberg, Erik
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870816316735-am.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 461.34 kB
Formato Adobe PDF
461.34 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1108489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact