We give an exposition and strengthening of P. Hieronymi’s Theorem: if C is a nonempty closed set definable in a definably complete expansion of an ordered field, then C satisfies an analogue of Baire’s Category Theorem.
A Note on Hieronymi’s Theorem: Every Definably Complete Structure Is Definably Baire / Fornasiero, Antongiulio. - STAMPA. - (2017), pp. 301-315. (Intervento presentato al convegno Groups, Modules, and Model Theory - Surveys and Recent Developments) [10.1007/978-3-319-51718-6_15].
A Note on Hieronymi’s Theorem: Every Definably Complete Structure Is Definably Baire
Fornasiero, Antongiulio
2017
Abstract
We give an exposition and strengthening of P. Hieronymi’s Theorem: if C is a nonempty closed set definable in a definably complete expansion of an ordered field, then C satisfies an analogue of Baire’s Category Theorem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
notes20.pdf
accesso aperto
Descrizione: Versione sottomessa
Tipologia:
Altro
Licenza:
Open Access
Dimensione
440.18 kB
Formato
Adobe PDF
|
440.18 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.