We give an exposition and strengthening of P. Hieronymi’s Theorem: if C is a nonempty closed set definable in a definably complete expansion of an ordered field, then C satisfies an analogue of Baire’s Category Theorem.

A Note on Hieronymi’s Theorem: Every Definably Complete Structure Is Definably Baire / Fornasiero, Antongiulio. - STAMPA. - (2017), pp. 301-315. (Intervento presentato al convegno Groups, Modules, and Model Theory - Surveys and Recent Developments) [10.1007/978-3-319-51718-6_15].

A Note on Hieronymi’s Theorem: Every Definably Complete Structure Is Definably Baire

Fornasiero, Antongiulio
2017

Abstract

We give an exposition and strengthening of P. Hieronymi’s Theorem: if C is a nonempty closed set definable in a definably complete expansion of an ordered field, then C satisfies an analogue of Baire’s Category Theorem.
2017
Groups, Modules, and Model Theory - Surveys and Recent Developments
Groups, Modules, and Model Theory - Surveys and Recent Developments
Fornasiero, Antongiulio
File in questo prodotto:
File Dimensione Formato  
notes20.pdf

accesso aperto

Descrizione: Versione sottomessa
Tipologia: Altro
Licenza: Open Access
Dimensione 440.18 kB
Formato Adobe PDF
440.18 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1108498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact