The use of single molecule magnets (SMMs) as cornerstone elements in spintronics and quantum computing applications demands that magnetic bistability is retained when molecules are interfaced with solid conducting surfaces. Here, we employ synchrotron Mössbauer spectroscopy to investigate a monolayer of a tetrairon(III) (Fe4) SMM chemically grafted on a gold substrate. At low temperature and zero magnetic field, we observe the magnetic pattern of the Fe4 molecule, indicating slow spin fluctuations compared to the Mössbauer timescale. Significant structural deformations of the magnetic core, induced by the interaction with the substrate, as predicted by ab initio molecular dynamics, are also observed. However, the effects of the modifications occurring at the individual iron sites partially compensate each other, so that slow magnetic relaxation is retained on the surface. Interestingly, these deformations escaped detection by conventional synchrotron-based techniques, like X-ray magnetic circular dichroism, thus highlighting the power of synchrotron Mössbauer spectroscopy for the investigation of hybrid interfaces.

Mössbauer spectroscopy of a monolayer of single molecule magnets / Cini, Alberto; Mannini, Matteo; Totti, Federico; Fittipaldi, Maria; Spina, Gabriele; Chumakov, Aleksandr; Rüffer, Rudolf; Andrea, Cornia; Sessoli, Roberta. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 9:(2018), pp. 0-0. [10.1038/s41467-018-02840-w]

Mössbauer spectroscopy of a monolayer of single molecule magnets

Cini, Alberto;Mannini, Matteo;Totti, Federico;Fittipaldi, Maria;Spina, Gabriele
;
Cornia, Andrea
;
Sessoli, Roberta
2018

Abstract

The use of single molecule magnets (SMMs) as cornerstone elements in spintronics and quantum computing applications demands that magnetic bistability is retained when molecules are interfaced with solid conducting surfaces. Here, we employ synchrotron Mössbauer spectroscopy to investigate a monolayer of a tetrairon(III) (Fe4) SMM chemically grafted on a gold substrate. At low temperature and zero magnetic field, we observe the magnetic pattern of the Fe4 molecule, indicating slow spin fluctuations compared to the Mössbauer timescale. Significant structural deformations of the magnetic core, induced by the interaction with the substrate, as predicted by ab initio molecular dynamics, are also observed. However, the effects of the modifications occurring at the individual iron sites partially compensate each other, so that slow magnetic relaxation is retained on the surface. Interestingly, these deformations escaped detection by conventional synchrotron-based techniques, like X-ray magnetic circular dichroism, thus highlighting the power of synchrotron Mössbauer spectroscopy for the investigation of hybrid interfaces.
2018
9
0
0
Cini, Alberto; Mannini, Matteo; Totti, Federico; Fittipaldi, Maria; Spina, Gabriele; Chumakov, Aleksandr; Rüffer, Rudolf; Andrea, Cornia; Sessoli, Roberta
File in questo prodotto:
File Dimensione Formato  
2018_NatCommun_Fe4SyncMoss.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1110165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 35
social impact