Abstract The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min-1. Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from  -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2  =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

Error detection capability of a novel transmission detector: A validation study for online VMAT monitoring / Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes. - In: PHYSICS IN MEDICINE AND BIOLOGY. - ISSN 0031-9155. - ELETTRONICO. - 62:(2017), pp. 7440-7450. [10.1088/1361-6560/aa7dc7]

Error detection capability of a novel transmission detector: A validation study for online VMAT monitoring

Marrazzo, Livia;Pallotta, Stefania;
2017

Abstract

Abstract The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min-1. Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from  -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2  =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.
2017
62
7440
7450
Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes
File in questo prodotto:
File Dimensione Formato  
Error detection capability of a novel transmission detector a validation.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1110374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact