We study a problem set in a finely mixed periodic medium, modelling electrical conduction in biological tissues. The unknown electric potential solves standard elliptic equations set in different conductive regions (the intracellular and extracellular spaces), separated by a dielectric surface (the cell membranes), which exhibits both a capacitive and a nonlinear conductive behaviour. Accordingly, dynamical conditions prevail on the membranes, so that the dependence of the solution on the time variable t is not only of parametric character. As the spatial period of the medium goes to zero, the electric potential approaches in a suitable sense a homogenization limit u(o), which keeps the prescribed boundary data, and solves the equation div [B(o)del(x)u(o) + integral(o)(t) A(1)(t - tau)del(x)u(o)(tau) dtau - F] = 0. This is an elliptic equation containing a term depending on the history of the gradient of uo; the matrices B(o), A(1) in it depend on the microstructure of the medium. More exactly, we have that, in the limit, the current is still divergence-free, but it depends on the history of the potential gradient, so that memory effects explicitly appear. The limiting equation also contains a term T keeping trace of the initial data.

Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues / ROBERTO GIANNI; DANIELE ANDREUCCI; MICOL AMAR; PAOLO BISEGNA. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 14:9(2004), pp. 1261-1295. [10.1142/s0218202504003623]

Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues

ROBERTO GIANNI;
2004

Abstract

We study a problem set in a finely mixed periodic medium, modelling electrical conduction in biological tissues. The unknown electric potential solves standard elliptic equations set in different conductive regions (the intracellular and extracellular spaces), separated by a dielectric surface (the cell membranes), which exhibits both a capacitive and a nonlinear conductive behaviour. Accordingly, dynamical conditions prevail on the membranes, so that the dependence of the solution on the time variable t is not only of parametric character. As the spatial period of the medium goes to zero, the electric potential approaches in a suitable sense a homogenization limit u(o), which keeps the prescribed boundary data, and solves the equation div [B(o)del(x)u(o) + integral(o)(t) A(1)(t - tau)del(x)u(o)(tau) dtau - F] = 0. This is an elliptic equation containing a term depending on the history of the gradient of uo; the matrices B(o), A(1) in it depend on the microstructure of the medium. More exactly, we have that, in the limit, the current is still divergence-free, but it depends on the history of the potential gradient, so that memory effects explicitly appear. The limiting equation also contains a term T keeping trace of the initial data.
2004
14
1261
1295
ROBERTO GIANNI; DANIELE ANDREUCCI; MICOL AMAR; PAOLO BISEGNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1111215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 42
social impact