Best possible second-order regularity is established for solutions to p-Laplacian type equations with square-integrable right-hand side. Our results provide a nonlinear counterpart of the classical L^2-coercivity theory for linear problems. Both local and global estimates are obtained. The latter apply to solutions to either Dirichlet or Neumann boundary value problems. Minimal regularity on the boundary of the domain is required, although our conclusions are new even for smooth domains. If the domain is convex, no regularity of its boundary is needed at all.

Second-order two-sided estimates in nonlinear elliptic problems / Andrea Cianchi; Vladimir Maz'ya. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 229:(2018), pp. 569-599. [10.1007/s00205-018-1223-7]

Second-order two-sided estimates in nonlinear elliptic problems

Andrea Cianchi
;
2018

Abstract

Best possible second-order regularity is established for solutions to p-Laplacian type equations with square-integrable right-hand side. Our results provide a nonlinear counterpart of the classical L^2-coercivity theory for linear problems. Both local and global estimates are obtained. The latter apply to solutions to either Dirichlet or Neumann boundary value problems. Minimal regularity on the boundary of the domain is required, although our conclusions are new even for smooth domains. If the domain is convex, no regularity of its boundary is needed at all.
2018
229
569
599
Andrea Cianchi; Vladimir Maz'ya
File in questo prodotto:
File Dimensione Formato  
Cianchi-Mazya ARMA-2018.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 483.78 kB
Formato Adobe PDF
483.78 kB Adobe PDF   Richiedi una copia
cm_second_ARMArevfinal-bozze.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 371.11 kB
Formato Adobe PDF
371.11 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1111406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 50
social impact