A simple formal procedure makes the main properties of the lagrangian binomial extendable to functions depending to any kind of order of the time--derivatives of the lagrangian coordinates. Such a broadly formulated binomial can provide the lagrangian components, in the classical sense of the Newton's law, for a quite general class of forces. At the same time, the generalized equations of motions recover some of the classical alternative formulations of the Lagrangian equations.

An extended Lagrangian formalism / Federico Talamucci. - ELETTRONICO. - (2018).

An extended Lagrangian formalism

Federico Talamucci
2018

Abstract

A simple formal procedure makes the main properties of the lagrangian binomial extendable to functions depending to any kind of order of the time--derivatives of the lagrangian coordinates. Such a broadly formulated binomial can provide the lagrangian components, in the classical sense of the Newton's law, for a quite general class of forces. At the same time, the generalized equations of motions recover some of the classical alternative formulations of the Lagrangian equations.
2018
Federico Talamucci
File in questo prodotto:
File Dimensione Formato  
extlagrarxiv.pdf

accesso aperto

Tipologia: Altro
Licenza: Open Access
Dimensione 149.54 kB
Formato Adobe PDF
149.54 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1111811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact