Let $ G$ be a finite solvable group, and let $ Delta (G)$ denote the prime graph built on the set of degrees of the irreducible complex characters of $ G$. A fundamental result by P. P. Pálfy asserts that the complement $ ar {Delta }(G)$ of the graph $ Delta (G)$ does not contain any cycle of length $ 3$. In this paper we generalize Pálfy's result, showing that $ ar {Delta }(G)$ does not contain any cycle of odd length, whence it is a bipartite graph. As an immediate consequence, the set of vertices of $ Delta (G)$ can be covered by two subsets, each inducing a complete subgraph. The latter property yields in turn that if $ n$ is the clique number of $ Delta (G)$, then $ Delta (G)$ has at most $ 2n$ vertices. This confirms a conjecture by Z. Akhlaghi and H. P. Tong-Viet, and provides some evidence for the famous $ ho $-$ sigma $ conjecture by B. Huppert.

On the character degree graph of solvable groups / Akhlaghi, Z., Casolo, C., Dolfi, S., Pacifici, E., Sanus, L.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 146:(2018), pp. 1505-1513. [10.1090/proc/13879]

On the character degree graph of solvable groups

Casolo C.;Dolfi S.;Pacifici E.;
2018

Abstract

Let $ G$ be a finite solvable group, and let $ Delta (G)$ denote the prime graph built on the set of degrees of the irreducible complex characters of $ G$. A fundamental result by P. P. Pálfy asserts that the complement $ ar {Delta }(G)$ of the graph $ Delta (G)$ does not contain any cycle of length $ 3$. In this paper we generalize Pálfy's result, showing that $ ar {Delta }(G)$ does not contain any cycle of odd length, whence it is a bipartite graph. As an immediate consequence, the set of vertices of $ Delta (G)$ can be covered by two subsets, each inducing a complete subgraph. The latter property yields in turn that if $ n$ is the clique number of $ Delta (G)$, then $ Delta (G)$ has at most $ 2n$ vertices. This confirms a conjecture by Z. Akhlaghi and H. P. Tong-Viet, and provides some evidence for the famous $ ho $-$ sigma $ conjecture by B. Huppert.
2018
146
1505
1513
Akhlaghi, Z., Casolo, C., Dolfi, S., Pacifici, E., Sanus, L.
File in questo prodotto:
File Dimensione Formato  
BipartiteComplementDegreeGraph.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 185.23 kB
Formato Adobe PDF
185.23 kB Adobe PDF   Richiedi una copia
1706.04351.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 159.39 kB
Formato Adobe PDF
159.39 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1113041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact