The spatial prediction of growing stock volume is one of the most frequent application of remote sensing for supporting the sustainable management of forest ecosystems. For such a purpose data from active or passive sensors are used as predictor variables in combination with measures taken in the field in sampling plots. The Sentinel-2 (S2) satellites are equipped with a Multi Spectral Instrument (MSI) capable of acquiring 13 bands in the visible and infrared domains with a spatial resolution varying between 10 and 60 m. The present study aimed at evaluating the performance of the S2-MSI imagery for estimating the growing stock volume of forest ecosystems. To do so we used 240 plots measured in two study areas in Italy. The imputation was carried out with eight k-Nearest Neighbours (k-NN) methods available in the open source YaImpute R package. In order to evaluate the S2-MSI performance we repeated the experimental protocol also with two other sets of images acquired by two well-known satellites equipped with multi spectral instruments: Landsat 8 OLI and RapidEye scanner. We found that S2 worked better than Landsat in 37.5% of the cases and in 62.5% of the cases better than RapidEye. In one study area the best performance was obtained with Landsat OLI (RMSD =6.84%) and in the other with S2 (RMSD =22.94%), both with the k-NN system based on a distance matrix calculated with the Random Forest algorithm. The results confirmed that S2 images are suitable for predicting growing stock volume obtaining good performances (average RMSD for both the test areas of less than 19%).

Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems / Mura M., Bottalico F., Giannetti F., Bertani R., Giannini R., Mancini M., Orlandini S., Travaglini D., Chirici G.. - In: INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION. - ISSN 1569-8432. - ELETTRONICO. - 66:(2018), pp. 126-134. [10.1016/j.jag.2017.11.013]

Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems

Mura M.;Bottalico F.;Giannetti F.;Giannini R.;Mancini M.;Orlandini S.;Travaglini D.;Chirici G.
2018

Abstract

The spatial prediction of growing stock volume is one of the most frequent application of remote sensing for supporting the sustainable management of forest ecosystems. For such a purpose data from active or passive sensors are used as predictor variables in combination with measures taken in the field in sampling plots. The Sentinel-2 (S2) satellites are equipped with a Multi Spectral Instrument (MSI) capable of acquiring 13 bands in the visible and infrared domains with a spatial resolution varying between 10 and 60 m. The present study aimed at evaluating the performance of the S2-MSI imagery for estimating the growing stock volume of forest ecosystems. To do so we used 240 plots measured in two study areas in Italy. The imputation was carried out with eight k-Nearest Neighbours (k-NN) methods available in the open source YaImpute R package. In order to evaluate the S2-MSI performance we repeated the experimental protocol also with two other sets of images acquired by two well-known satellites equipped with multi spectral instruments: Landsat 8 OLI and RapidEye scanner. We found that S2 worked better than Landsat in 37.5% of the cases and in 62.5% of the cases better than RapidEye. In one study area the best performance was obtained with Landsat OLI (RMSD =6.84%) and in the other with S2 (RMSD =22.94%), both with the k-NN system based on a distance matrix calculated with the Random Forest algorithm. The results confirmed that S2 images are suitable for predicting growing stock volume obtaining good performances (average RMSD for both the test areas of less than 19%).
2018
66
126
134
Mura M., Bottalico F., Giannetti F., Bertani R., Giannini R., Mancini M., Orlandini S., Travaglini D., Chirici G.
File in questo prodotto:
File Dimensione Formato  
2018_Mura_JAG_Sentinel2.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1113378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 75
social impact