Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.

Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions / Webber, Heidi*; White, Jeffrey W.; Kimball, Bruce A.; Ewert, Frank; Asseng, Senthold; Eyshi Rezaei, Ehsan; Pinter, Paul J.; Hatfield, Jerry L.; Reynolds, Matthew P.; Ababaei, Behnam; Bindi, Marco; Doltra, Jordi; Ferrise, Roberto; Kage, Henning; Kassie, Belay T.; Kersebaum, Kurt-Christian; Luig, Adam; Olesen, Jørgen E.; Semenov, Mikhail A.; Stratonovitch, Pierre; Ratjen, Arne M.; LaMorte, Robert L.; Leavitt, Steven W.; Hunsaker, Douglas J.; Wall, Gerard W.; Martre, Pierre. - In: FIELD CROPS RESEARCH. - ISSN 0378-4290. - STAMPA. - 216:(2018), pp. 75-88. [10.1016/j.fcr.2017.11.005]

Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

Bindi, Marco;Ferrise, Roberto;
2018

Abstract

Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.
2018
216
75
88
Webber, Heidi*; White, Jeffrey W.; Kimball, Bruce A.; Ewert, Frank; Asseng, Senthold; Eyshi Rezaei, Ehsan; Pinter, Paul J.; Hatfield, Jerry L.; Reynol...espandi
File in questo prodotto:
File Dimensione Formato  
Webber et al_2018_Field Crops Res.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1113647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact