Mutations of ion channel genes have a major role in the pathogenesis of several epilepsies, confirming that some epilepsies are disorders due to the impairment of ion channel function (channelopathies). Voltage-gated Na(+) channels (VGSCs) play an essential role in neuronal excitability; it is, therefore, not surprising that most mutations associated with epilepsy have been identified in genes coding for VGSCs subunits. Epilepsies linked to VGSCs mutations range in severity from mild disorders, such as benign neonatal-infantile familial seizures and febrile seizures, to severe and drug-resistant epileptic encephalopathies. SCN1A is the most clinically relevant of all of the known epilepsy genes, several hundred mutations have been identified in this gene. This review will summarize recent advances and new perspectives on Na(+) channels and epilepsy. A better understanding of the genetic basis and of how gene defects cause seizures is mandatory to direct future research for newer selective and more efficacious treatments.

Na+channelopathies and epilepsy: Recent advances and new perspectives / Marini, Carla; Mantegazza, Massimo. - In: EXPERT REVIEW OF CLINICAL PHARMACOLOGY. - ISSN 1751-2433. - ELETTRONICO. - 3:(2010), pp. 371-384. [10.1586/ecp.10.20]

Na+channelopathies and epilepsy: Recent advances and new perspectives

Marini, Carla
Writing – Original Draft Preparation
;
2010

Abstract

Mutations of ion channel genes have a major role in the pathogenesis of several epilepsies, confirming that some epilepsies are disorders due to the impairment of ion channel function (channelopathies). Voltage-gated Na(+) channels (VGSCs) play an essential role in neuronal excitability; it is, therefore, not surprising that most mutations associated with epilepsy have been identified in genes coding for VGSCs subunits. Epilepsies linked to VGSCs mutations range in severity from mild disorders, such as benign neonatal-infantile familial seizures and febrile seizures, to severe and drug-resistant epileptic encephalopathies. SCN1A is the most clinically relevant of all of the known epilepsy genes, several hundred mutations have been identified in this gene. This review will summarize recent advances and new perspectives on Na(+) channels and epilepsy. A better understanding of the genetic basis and of how gene defects cause seizures is mandatory to direct future research for newer selective and more efficacious treatments.
2010
3
371
384
Marini, Carla; Mantegazza, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1114515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact