Greenhouse gas emissions (GHGs) into the atmosphere derived from the use of fertilisers is a serious issue for the sustainability of agricultural systems, also considering that the growing global demand for food requires an increasingly productive agriculture. Emissions dynamics are very variable and are determined by many factors and their reciprocal interactions. Among driving factors, soil type (mineral, organic and microbiological composition), fertilisation method, climate, and the cropping system. In the present experiment, the combined effect of soil organic matter (SOM) and fertilisation method on the emissions of GHGs and ammonia (NH3) was investigated. Liquid fraction of digestate from pig slurries, compost from organic fraction of municipal solid wastes, and urea were applied on bare soil with two levels of organic matter (OM1: 1.3% and OM2: 4.3%). Emissions were directly monitored by a static chamber system and a portable gas analyser. Results show that soil organic matter as well as the composition of the fertilisers affect greenhouse gasses emissions. Emissions of methane (CH4) produced by digestate and compost during experimental period were higher in correspondence of lower organic matter content (0.58 – 0.49 kg CH4 C/ha/ day and 0.37 – 0.32 kg CH4 C/ha/day for digestate and compost respectively), contrary to what was observed for urea. For all fertilisers, carbon dioxide (CO2) and nitrous oxide (N2O) emissions were higher in correspondence of higher organic matter level. In particular, CO2 emissions were 11.05%, 67.48% and 82.84% higher in OM2 than OM1 for digestate, urea and compost respectively. Likewise, N2O emissions were 87.45%, 68.97% and 92.11% higher in OM2 than OM1 for digestate, urea and compost respectively. The obtained results show that the content of organic matter in soils plays a key role on the emissions of GHGs, generally enhancing the levels of gas emissions.

Greenhouse gas and ammonia emissions from soil: the effect of organic matter and fertilisation method / Verdi, Leonardo; Mancini, Marco; Ljubojevic, Mirjana; Orlandini, Simone; Dalla Marta, Anna. - In: ITALIAN JOURNAL OF AGRONOMY. - ISSN 2039-6805. - ELETTRONICO. - 13:(2018), pp. 260-266. [10.4081/ija.2018.1124]

Greenhouse gas and ammonia emissions from soil: the effect of organic matter and fertilisation method

Verdi, Leonardo
;
Mancini, Marco;Orlandini, Simone;Dalla Marta, Anna
2018

Abstract

Greenhouse gas emissions (GHGs) into the atmosphere derived from the use of fertilisers is a serious issue for the sustainability of agricultural systems, also considering that the growing global demand for food requires an increasingly productive agriculture. Emissions dynamics are very variable and are determined by many factors and their reciprocal interactions. Among driving factors, soil type (mineral, organic and microbiological composition), fertilisation method, climate, and the cropping system. In the present experiment, the combined effect of soil organic matter (SOM) and fertilisation method on the emissions of GHGs and ammonia (NH3) was investigated. Liquid fraction of digestate from pig slurries, compost from organic fraction of municipal solid wastes, and urea were applied on bare soil with two levels of organic matter (OM1: 1.3% and OM2: 4.3%). Emissions were directly monitored by a static chamber system and a portable gas analyser. Results show that soil organic matter as well as the composition of the fertilisers affect greenhouse gasses emissions. Emissions of methane (CH4) produced by digestate and compost during experimental period were higher in correspondence of lower organic matter content (0.58 – 0.49 kg CH4 C/ha/ day and 0.37 – 0.32 kg CH4 C/ha/day for digestate and compost respectively), contrary to what was observed for urea. For all fertilisers, carbon dioxide (CO2) and nitrous oxide (N2O) emissions were higher in correspondence of higher organic matter level. In particular, CO2 emissions were 11.05%, 67.48% and 82.84% higher in OM2 than OM1 for digestate, urea and compost respectively. Likewise, N2O emissions were 87.45%, 68.97% and 92.11% higher in OM2 than OM1 for digestate, urea and compost respectively. The obtained results show that the content of organic matter in soils plays a key role on the emissions of GHGs, generally enhancing the levels of gas emissions.
2018
13
260
266
Verdi, Leonardo; Mancini, Marco; Ljubojevic, Mirjana; Orlandini, Simone; Dalla Marta, Anna
File in questo prodotto:
File Dimensione Formato  
Verdi et al 2018.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1117172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
social impact