Pointwise estimates for the gradient of solutions to the p-Laplace system with right-hand side in divergence form are established. Their formulation involves the sharp maximal operator, whose properties enable us to develop a nonlinear counterpart of the classical Calderon-Zygmund theory for the Laplacian. As a consequence, a flexible, comprehensive approach to gradient bounds for the $p$-Laplace system for a broad class of norms is derived. The relevant gradient bounds are just reduced to norm inequalities for a classical operator of harmonic analysis. In particular, new gradient estimates are exhibited which augment the available literature in the elliptic regularity theory.

Pointwise Calderon-Zygmund gradient estimates for the p-Laplace system / D.Breit, A.Cianchi, L.Diening, T.Kuusi, S.Schwarzacher. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 114:(2018), pp. 146-190. [10.1016/j.matpur.2017.07.011]

Pointwise Calderon-Zygmund gradient estimates for the p-Laplace system

A. Cianchi
;
2018

Abstract

Pointwise estimates for the gradient of solutions to the p-Laplace system with right-hand side in divergence form are established. Their formulation involves the sharp maximal operator, whose properties enable us to develop a nonlinear counterpart of the classical Calderon-Zygmund theory for the Laplacian. As a consequence, a flexible, comprehensive approach to gradient bounds for the $p$-Laplace system for a broad class of norms is derived. The relevant gradient bounds are just reduced to norm inequalities for a classical operator of harmonic analysis. In particular, new gradient estimates are exhibited which augment the available literature in the elliptic regularity theory.
2018
114
146
190
D.Breit, A.Cianchi, L.Diening, T.Kuusi, S.Schwarzacher
File in questo prodotto:
File Dimensione Formato  
pointwise-JMPA.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 528.39 kB
Formato Adobe PDF
528.39 kB Adobe PDF
BCDKS_JMPA.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 645.85 kB
Formato Adobe PDF
645.85 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1117585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 46
social impact