Si prova l'esistenza di una varietà inerziale per un modello di deconvoluzione per le equazioni di Boussinesq 2D. We show the existence of an inertial manifold (i.e. a globally invariant, exponen- tially attracting, finite-dimensional manifold) for the approximate deconvolution model of the 2D mean Boussinesq equations. This model is obtained by means of the Van Cittern approximate deconvolution operators, which is applied to the 2D filtered Boussinesq equations.
On the existence of an inertial manifold for a deconvolution model of the 2D mean Boussinesq equations / Luca Bisconti; Davide Catania. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - STAMPA. - 41:(2018), pp. 4923-4935. [10.1002/mma.4939]
On the existence of an inertial manifold for a deconvolution model of the 2D mean Boussinesq equations
Luca Bisconti
;
2018
Abstract
Si prova l'esistenza di una varietà inerziale per un modello di deconvoluzione per le equazioni di Boussinesq 2D. We show the existence of an inertial manifold (i.e. a globally invariant, exponen- tially attracting, finite-dimensional manifold) for the approximate deconvolution model of the 2D mean Boussinesq equations. This model is obtained by means of the Van Cittern approximate deconvolution operators, which is applied to the 2D filtered Boussinesq equations.File | Dimensione | Formato | |
---|---|---|---|
Bisconti-Catania-20180129.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
496.25 kB
Formato
Adobe PDF
|
496.25 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.