Si prova l'esistenza di una varietà inerziale per un modello di deconvoluzione per le equazioni di Boussinesq 2D. We show the existence of an inertial manifold (i.e. a globally invariant, exponen- tially attracting, finite-dimensional manifold) for the approximate deconvolution model of the 2D mean Boussinesq equations. This model is obtained by means of the Van Cittern approximate deconvolution operators, which is applied to the 2D filtered Boussinesq equations.

On the existence of an inertial manifold for a deconvolution model of the 2D mean Boussinesq equations / Luca Bisconti; Davide Catania. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - STAMPA. - 41:(2018), pp. 4923-4935. [10.1002/mma.4939]

On the existence of an inertial manifold for a deconvolution model of the 2D mean Boussinesq equations

Luca Bisconti
;
2018

Abstract

Si prova l'esistenza di una varietà inerziale per un modello di deconvoluzione per le equazioni di Boussinesq 2D. We show the existence of an inertial manifold (i.e. a globally invariant, exponen- tially attracting, finite-dimensional manifold) for the approximate deconvolution model of the 2D mean Boussinesq equations. This model is obtained by means of the Van Cittern approximate deconvolution operators, which is applied to the 2D filtered Boussinesq equations.
2018
41
4923
4935
Goal 17: Partnerships for the goals
Luca Bisconti; Davide Catania
File in questo prodotto:
File Dimensione Formato  
Bisconti-Catania-20180129.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 496.25 kB
Formato Adobe PDF
496.25 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1120152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact