The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+ pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.
Ca2+/H+exchange, lumenal Ca2+release and Ca2+/ATP coupling ratios in the sarcoplasmic reticulum ATPase / Inesi, Giuseppe*; Tadini-Buoninsegni, Francesco. - In: JOURNAL OF CELL COMMUNICATION AND SIGNALING. - ISSN 1873-9601. - STAMPA. - 8:(2014), pp. 5-11. [10.1007/s12079-013-0213-7]
Ca2+/H+exchange, lumenal Ca2+release and Ca2+/ATP coupling ratios in the sarcoplasmic reticulum ATPase
Tadini-Buoninsegni, Francesco
2014
Abstract
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+ pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.