In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects – e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models – may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R2 values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10–20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models.
Accounting for spatial effects in land use regression for urban air pollution modeling / Bertazzon, Stefania*; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G.. - In: SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY. - ISSN 1877-5845. - STAMPA. - 14-15:(2015), pp. 9-21. [10.1016/j.sste.2015.06.002]
Accounting for spatial effects in land use regression for urban air pollution modeling
Bertazzon, Stefania
;
2015
Abstract
In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects – e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models – may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R2 values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10–20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models.File | Dimensione | Formato | |
---|---|---|---|
LUR-NO2.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.