The constant increase of computational power has made feasible to investigate the folding mechanism of small proteins using molecular dynamics (MD). Metal-binding proteins (metalloproteins) are usually complicated to model, largely due to the presence of the metal cofactor. Thus, the study of metal-coupled folding is still challenging. In this work, we addressed the folding process of Pyrococcus furiosus rubredoxin (PfRd), a 53-residue protein binding a single iron ion, using different MD methods. Starting from an extended conformation of the polypeptide chain where we preserved the coordination of the metal ion, a classical MD simulation and an extensive accelerated MD run were performed to reconstruct the folding process of the metal-bound protein. For comparison, we simulated also the dynamics of folded PfRd devoid of the metal cofactor (apo-form), starting from the folded structure. For these MD trajectories, we computed various structural and biochemical properties. In addition, we took advantage of available experimental data to quantify the degree to which our simulations sampled conformations close to the native folded state. We observed that the compaction of the hydrophobic core is the main feature driving the folding of the structure. However, we could not reach a fully folded conformation within our trajectories, because of the incomplete removal of the solvent from the core. Altogether, the various MD simulations, including that of the folded apo-form of the protein, suggest that an improvement in the accuracy of the protein force-field is still needed

Molecular dynamics simulations of metalloproteins: A folding study of rubredoxin from Pyrococcus furiosus / Sala, Davide; Giachetti, Andrea; Rosato, Antonio. - In: AIMS BIOPHYSICS. - ISSN 2377-9098. - ELETTRONICO. - 5:(2018), pp. 77-96. [10.3934/biophy.2018.1.77]

Molecular dynamics simulations of metalloproteins: A folding study of rubredoxin from Pyrococcus furiosus

Sala, Davide;Rosato, Antonio
2018

Abstract

The constant increase of computational power has made feasible to investigate the folding mechanism of small proteins using molecular dynamics (MD). Metal-binding proteins (metalloproteins) are usually complicated to model, largely due to the presence of the metal cofactor. Thus, the study of metal-coupled folding is still challenging. In this work, we addressed the folding process of Pyrococcus furiosus rubredoxin (PfRd), a 53-residue protein binding a single iron ion, using different MD methods. Starting from an extended conformation of the polypeptide chain where we preserved the coordination of the metal ion, a classical MD simulation and an extensive accelerated MD run were performed to reconstruct the folding process of the metal-bound protein. For comparison, we simulated also the dynamics of folded PfRd devoid of the metal cofactor (apo-form), starting from the folded structure. For these MD trajectories, we computed various structural and biochemical properties. In addition, we took advantage of available experimental data to quantify the degree to which our simulations sampled conformations close to the native folded state. We observed that the compaction of the hydrophobic core is the main feature driving the folding of the structure. However, we could not reach a fully folded conformation within our trajectories, because of the incomplete removal of the solvent from the core. Altogether, the various MD simulations, including that of the folded apo-form of the protein, suggest that an improvement in the accuracy of the protein force-field is still needed
2018
5
77
96
Sala, Davide; Giachetti, Andrea; Rosato, Antonio
File in questo prodotto:
File Dimensione Formato  
AIMS_Biophysics2018.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1125844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact