While accelerated computing instances providing access to NVIDIATM GPUs are already available since a couple of years in commercial public clouds like Amazon EC2, the EGI Federated Cloud has put in production its first OpenStack-based site providing GPU-equipped instances at the end of 2015. However, many EGI sites which are providing GPUs or MIC coprocessors to enable high performance processing are not directly supported yet in a federated manner by the EGI HTC and Cloud platforms. In fact, to use the accelerator cards capabilities available at resource centre level, users must directly interact with the local provider to get information about the type of resources and software libraries available, and which submission queues must be used to submit accelerated computing workloads. EU-funded project EGI-Engage since March 2015 has worked to implement the support to accelerated computing on both its HTC and Cloud platforms addressing two levels: the information system, based on the OGF GLUE standard, and the middleware. By developing a common extension of the information system structure, it was possible to expose the correct information about the accelerated computing technologies available, both software and hardware, at site level. Accelerator capabilities can now be published uniformly, so that users can extract all the information directly from the information system without interacting with the sites, and easily use resources provided by multiple sites. On the other hand, HTC and Cloud middleware support for accelerator cards has been extended, where needed, in order to provide a transparent and uniform way to allocate these resources together with CPU cores efficiently to the users. In this paper we describe the solution developed for enabling accelerated computing support in the CREAM Computing Element for the most popular batch systems and, for what concerns the information system, the new objects and attributes proposed for implementation in the version 2.1 of the GLUE schema. For what concerns the Cloud platform, we describe the solutions implemented to enable GPU virtualisation on KVM hypervisor via PCI pass-through technology on both OpenStack and OpenNebula based IaaS cloud sites, which are now part of the EGI Federated Cloud offer, and the latest developments about GPU direct access through LXD container technology as a replacement of KVM hypervisor. Moreover, we showcase a number of applications and best practices implemented by the structural biology and biodiversity scientific user communities that already started to use the first accelerated computing resources made available through the EGI HTC and Cloud platforms.

EGI federated platforms supporting accelerated computing / Andreetto, Paolo; Astalos, Jan; Dobrucky, Miroslav; Giachetti, Andrea; Rebatto, David; Rosato, Antonio; Tran, Viet; Verlato, Marco; Zangrando, Lisa. - In: POS PROCEEDINGS OF SCIENCE. - ISSN 1824-8039. - ELETTRONICO. - 2017-:(2017), pp. 0-0. (Intervento presentato al convegno 2017 International Symposium on Grids and Clouds, ISGC 2017 tenutosi a Academia Sinica, twn nel 2017).

EGI federated platforms supporting accelerated computing

Rosato, Antonio
Membro del Collaboration Group
;
2017

Abstract

While accelerated computing instances providing access to NVIDIATM GPUs are already available since a couple of years in commercial public clouds like Amazon EC2, the EGI Federated Cloud has put in production its first OpenStack-based site providing GPU-equipped instances at the end of 2015. However, many EGI sites which are providing GPUs or MIC coprocessors to enable high performance processing are not directly supported yet in a federated manner by the EGI HTC and Cloud platforms. In fact, to use the accelerator cards capabilities available at resource centre level, users must directly interact with the local provider to get information about the type of resources and software libraries available, and which submission queues must be used to submit accelerated computing workloads. EU-funded project EGI-Engage since March 2015 has worked to implement the support to accelerated computing on both its HTC and Cloud platforms addressing two levels: the information system, based on the OGF GLUE standard, and the middleware. By developing a common extension of the information system structure, it was possible to expose the correct information about the accelerated computing technologies available, both software and hardware, at site level. Accelerator capabilities can now be published uniformly, so that users can extract all the information directly from the information system without interacting with the sites, and easily use resources provided by multiple sites. On the other hand, HTC and Cloud middleware support for accelerator cards has been extended, where needed, in order to provide a transparent and uniform way to allocate these resources together with CPU cores efficiently to the users. In this paper we describe the solution developed for enabling accelerated computing support in the CREAM Computing Element for the most popular batch systems and, for what concerns the information system, the new objects and attributes proposed for implementation in the version 2.1 of the GLUE schema. For what concerns the Cloud platform, we describe the solutions implemented to enable GPU virtualisation on KVM hypervisor via PCI pass-through technology on both OpenStack and OpenNebula based IaaS cloud sites, which are now part of the EGI Federated Cloud offer, and the latest developments about GPU direct access through LXD container technology as a replacement of KVM hypervisor. Moreover, we showcase a number of applications and best practices implemented by the structural biology and biodiversity scientific user communities that already started to use the first accelerated computing resources made available through the EGI HTC and Cloud platforms.
2017
Proceedings of Science
2017 International Symposium on Grids and Clouds, ISGC 2017
Academia Sinica, twn
2017
Andreetto, Paolo; Astalos, Jan; Dobrucky, Miroslav; Giachetti, Andrea; Rebatto, David; Rosato, Antonio; Tran, Viet; Verlato, Marco; Zangrando, Lisa
File in questo prodotto:
File Dimensione Formato  
ISGC2017_Proceedings020.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 966.33 kB
Formato Adobe PDF
966.33 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1125846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact