In this report we have tested a parallel implementation for the simulation of lipid bilayers at the atomistic level, based on a generalized ensemble protocol where only the torsional degrees of freedom of the alkyl chains of the lipids are heated. The results in terms of configurational sampling enhancement have been compared with a conventional simulation produced with a widespread molecular dynamics code. Results show that the proposed thermodynamic-based multiple trajectories parallel protocol for membrane simulations allows for an efficient use of CPU resources with respect to the conventional single trajectory, providing accurate results for area and volume per lipid, membrane thickness, undulation spectra and boosting significantly diffusion and mixing in lipid bilayers due to the sampling enhancement of gauche/trans ratios of the alkyl chain dihedral angles.

Lipid tempering simulation of model biological membranes on parallel platforms / Cardelli, Chiara; Barducci, Alessandro; Procacci, Piero*. - In: BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES. - ISSN 0005-2736. - STAMPA. - 1860:(2018), pp. 1480-1488. [10.1016/j.bbamem.2018.04.013]

Lipid tempering simulation of model biological membranes on parallel platforms

Procacci, Piero
2018

Abstract

In this report we have tested a parallel implementation for the simulation of lipid bilayers at the atomistic level, based on a generalized ensemble protocol where only the torsional degrees of freedom of the alkyl chains of the lipids are heated. The results in terms of configurational sampling enhancement have been compared with a conventional simulation produced with a widespread molecular dynamics code. Results show that the proposed thermodynamic-based multiple trajectories parallel protocol for membrane simulations allows for an efficient use of CPU resources with respect to the conventional single trajectory, providing accurate results for area and volume per lipid, membrane thickness, undulation spectra and boosting significantly diffusion and mixing in lipid bilayers due to the sampling enhancement of gauche/trans ratios of the alkyl chain dihedral angles.
2018
1860
1480
1488
Cardelli, Chiara; Barducci, Alessandro; Procacci, Piero*
File in questo prodotto:
File Dimensione Formato  
ms_revised.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1128986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact