Multi-frequency, highly oscillatory Hamiltonian problems derive from the mathematical modelling of many real-life applications. We here propose a variant of Hamiltonian Boundary Value Methods (HBVMs), which is able to efficiently deal with the numerical solution of such problems. We present algorithms to select the parameters of the methods that allow one to obtain numerical approximations with spectral accuracy. We also propose an efficient implementation of the methods when using a Newton-type iteration to solve the implicit equations associated with this class of formulas.

On the effectiveness of spectral methods for the numerical solution of multi-frequency highly oscillatory Hamiltonian problems / L.Brugnano, J.I.Montijano, L.Randez. - In: NUMERICAL ALGORITHMS. - ISSN 1017-1398. - STAMPA. - 81:(2019), pp. 345-376. [10.1007/s11075-018-0552-9]

On the effectiveness of spectral methods for the numerical solution of multi-frequency highly oscillatory Hamiltonian problems

L. Brugnano;
2019

Abstract

Multi-frequency, highly oscillatory Hamiltonian problems derive from the mathematical modelling of many real-life applications. We here propose a variant of Hamiltonian Boundary Value Methods (HBVMs), which is able to efficiently deal with the numerical solution of such problems. We present algorithms to select the parameters of the methods that allow one to obtain numerical approximations with spectral accuracy. We also propose an efficient implementation of the methods when using a Newton-type iteration to solve the implicit equations associated with this class of formulas.
2019
81
345
376
L.Brugnano, J.I.Montijano, L.Randez
File in questo prodotto:
File Dimensione Formato  
NUMA (2018) 10.1007-s11075-018-0552-9.pdf

Accesso chiuso

Descrizione: versione pubblicata on-line
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 781.54 kB
Formato Adobe PDF
781.54 kB Adobe PDF   Richiedi una copia
1711.08810.pdf

Open Access dal 02/06/2019

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 286.18 kB
Formato Adobe PDF
286.18 kB Adobe PDF
numa 81 (2019) 345-376.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 809.94 kB
Formato Adobe PDF
809.94 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1129253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 32
social impact