In this paper, we analyze control affine optimal control problems with a cost functional involving the absolute value of the control. The Pontrya- gin extremals associated with such systems are given by (possible) concatena- tions of bang arcs with singular arcs and with zero control arcs, that is, arcs where the control is identically zero. Here, we consider Pontryagin extremals given by a bang-zero control-bang concatenation. We establish sufficient op- timality conditions for such extremals, in terms of some regularity conditions and of the coerciveness of a suitable finite-dimensional second variation.

Strong local optimality for generalized L1 optimal control problems / Francesca C. Chittaro, Laura Poggiolini. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - STAMPA. - 180(2019), pp. 207-234. [10.1007/s10957-018-1337-y]

Strong local optimality for generalized L1 optimal control problems

Laura Poggiolini
2019

Abstract

In this paper, we analyze control affine optimal control problems with a cost functional involving the absolute value of the control. The Pontrya- gin extremals associated with such systems are given by (possible) concatena- tions of bang arcs with singular arcs and with zero control arcs, that is, arcs where the control is identically zero. Here, we consider Pontryagin extremals given by a bang-zero control-bang concatenation. We establish sufficient op- timality conditions for such extremals, in terms of some regularity conditions and of the coerciveness of a suitable finite-dimensional second variation.
180
207
234
Francesca C. Chittaro, Laura Poggiolini
File in questo prodotto:
File Dimensione Formato  
2019_JOTA_chittaro_poggiolini.pdf

Accesso chiuso

Descrizione: versione dell'editore
Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 678.56 kB
Formato Adobe PDF
678.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
bang-in-bang-hal.pdf

embargo fino al 26/06/2019

Descrizione: versione post-print
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: DRM non definito
Dimensione 466.38 kB
Formato Adobe PDF
466.38 kB Adobe PDF Visualizza/Apri

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1129492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact