PURPOSE:Many evidences show that the hormone relaxin plays a pivotal role in the physiology and pathology of the cardiovascular system. This pleiotropic hormone exerts regulatory functions through specific receptors in cardiovascular tissues: in experimental animal models it was shown to induce coronary vasodilation, prevent cardiac damage induced by ischemia/reperfusion and revert cardiac hypertrophy and fibrosis. A tight relationship between this hormone and important metabolic pathways has been suggested, but it is at present unknown if relaxin could regulate cardiac metabolism. Our aim was to study the possible effects of relaxin on cardiomyocyte metabolism. METHODS:Neonatal rat cardiomyocytes were treated with relaxin and (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays (MTT) were performed to assess metabolic activity; while 2-deoxy-D-[3H] glucose and BODIPY-labelled fatty acid incorporations were analyzed to measure glucose and fatty acid uptakes, and western blot was utilized to study the intracellular signaling pathways activated by the hormone. RESULTS:We observed that relaxin at 10 ng/ml was able to increase the level of metabolic activity of cultured neonatal rat cardiomyocytes; the rate of 2-deoxy-D-[3H]glucose incorporation demonstrated that relaxin also induced an increase in glucose uptake. First evidence is also offered that relaxin can activate the master energy sensor and regulator AMPK in cardiomyocytes. Moreover, the treatment of cardiomyocytes with relaxin also induced dose-dependent increases in ERK1/2, AKT, and AS160 phosphorylation. That raise in AS160 phosphorylation induced by relaxin was prevented by the pretreatment with AMPK and AKT pathways inhibitors, indicating that both molecules play important roles in the relaxin effects reported. CONCLUSION:Relaxin can regulate cardiomyocyte metabolism and activate AMPK, the central sensor of energy status that maintains cellular energy homeostasis, and also ERK and AKT, two molecular sensing nodes that coordinate dynamic responses of the cell's metabolic responses
Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes / Aragón-Herrera, A.; Feijóo-Bandín, S.; Rodríguez-Penas, D.; Roselló-Lletí, E.; Portolés, M.; Rivera, M.; Bigazzi, M.; Bani, D.; Gualillo, O.; González-Juanatey, J.R.; Lago, F.. - In: ENDOCRINE. - ISSN 1355-008X. - STAMPA. - 60:(2018), pp. 103-111. [10.1007/s12020-018-1534-3]
Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes
Bani, D.Writing – Review & Editing
;
2018
Abstract
PURPOSE:Many evidences show that the hormone relaxin plays a pivotal role in the physiology and pathology of the cardiovascular system. This pleiotropic hormone exerts regulatory functions through specific receptors in cardiovascular tissues: in experimental animal models it was shown to induce coronary vasodilation, prevent cardiac damage induced by ischemia/reperfusion and revert cardiac hypertrophy and fibrosis. A tight relationship between this hormone and important metabolic pathways has been suggested, but it is at present unknown if relaxin could regulate cardiac metabolism. Our aim was to study the possible effects of relaxin on cardiomyocyte metabolism. METHODS:Neonatal rat cardiomyocytes were treated with relaxin and (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays (MTT) were performed to assess metabolic activity; while 2-deoxy-D-[3H] glucose and BODIPY-labelled fatty acid incorporations were analyzed to measure glucose and fatty acid uptakes, and western blot was utilized to study the intracellular signaling pathways activated by the hormone. RESULTS:We observed that relaxin at 10 ng/ml was able to increase the level of metabolic activity of cultured neonatal rat cardiomyocytes; the rate of 2-deoxy-D-[3H]glucose incorporation demonstrated that relaxin also induced an increase in glucose uptake. First evidence is also offered that relaxin can activate the master energy sensor and regulator AMPK in cardiomyocytes. Moreover, the treatment of cardiomyocytes with relaxin also induced dose-dependent increases in ERK1/2, AKT, and AS160 phosphorylation. That raise in AS160 phosphorylation induced by relaxin was prevented by the pretreatment with AMPK and AKT pathways inhibitors, indicating that both molecules play important roles in the relaxin effects reported. CONCLUSION:Relaxin can regulate cardiomyocyte metabolism and activate AMPK, the central sensor of energy status that maintains cellular energy homeostasis, and also ERK and AKT, two molecular sensing nodes that coordinate dynamic responses of the cell's metabolic responsesFile | Dimensione | Formato | |
---|---|---|---|
Aragón-Herrera2018_Article_RelaxinActivatesAMPK-AKTSignal.pdf
Accesso chiuso
Descrizione: full text
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.