A potato crop multi-model assessment was conducted to quantify uncertainty among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States) input management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with inter-annual variability, and predictions for all agronomic variables were significantly different from one model to another (p < 0.001). Uncertainty averaged 15% higher for low- versus high- input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41 and 23% for yield and ET respectively as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for non-irrigated sites). Differences in predictions due to model representation of light utilization were significant (p < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach.

Simulated Climate Change Impacts and Model Uncertainty Associated with Multiple Potato Models / Fleisher, D.H; Condori, B.; Quiroz, R.; Alva, A.K.; Asseng, S.; Barreda, C.; Bindi, M.; Boote, K.J.; Ferrise, R.; Franke, A.C.; Govindakrishnan, P.M.; Harahagazwe, D.; Hoogenboom, G.; Kumar, N.S.; Merante, P.; Nendel, C.; Olesen, J.E.; Parker, P.; Raes, D.; Raymundo, R.M.; Ruane, A.C.; Stockle, C.O.; Supit, I.; Vanuytrecht, E.; Wolf, J.; Woli, P.. - ELETTRONICO. - (2016), pp. 0-0. (Intervento presentato al convegno Resilience Emerging from Scarcity and Abundance tenutosi a Phoenix, AZ, USA nel 6-9 November 2016).

Simulated Climate Change Impacts and Model Uncertainty Associated with Multiple Potato Models

Bindi, M.;Ferrise, R.;Merante, P.;
2016

Abstract

A potato crop multi-model assessment was conducted to quantify uncertainty among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States) input management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with inter-annual variability, and predictions for all agronomic variables were significantly different from one model to another (p < 0.001). Uncertainty averaged 15% higher for low- versus high- input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41 and 23% for yield and ET respectively as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for non-irrigated sites). Differences in predictions due to model representation of light utilization were significant (p < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach.
2016
Conference Proceedings of ASA, CSSA and SSSA International Annual Meetings (2016)
Resilience Emerging from Scarcity and Abundance
Phoenix, AZ, USA
Fleisher, D.H; Condori, B.; Quiroz, R.; Alva, A.K.; Asseng, S.; Barreda, C.; Bindi, M.; Boote, K.J.; Ferrise, R.; Franke, A.C.; Govindakrishnan, P.M.; Harahagazwe, D.; Hoogenboom, G.; Kumar, N.S.; Merante, P.; Nendel, C.; Olesen, J.E.; Parker, P.; Raes, D.; Raymundo, R.M.; Ruane, A.C.; Stockle, C.O.; Supit, I.; Vanuytrecht, E.; Wolf, J.; Woli, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1133045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact