Recently, the numerical solution of multi-frequency, highly oscillatory Hamiltonian problems has been attacked by using Hamiltonian boundary value methods (HBVMs) as spectral methods in time. When the problem derives from the space semi-discretization of (possibly Hamiltonian) partial differential equations (PDEs), the resulting problem may be stiffly oscillatory, rather than highly oscillatory. In such a case, a different implementation of the methods is needed, in order to gain the maximum efficiency.

Spectrally accurate space-time solution of Hamiltonian PDEs / Brugnano, Luigi; Iavernaro, Felice; Montijano, Juan I.; Rández, Luis. - In: NUMERICAL ALGORITHMS. - ISSN 1017-1398. - STAMPA. - 81:(2019), pp. 1183-1202. [10.1007/s11075-018-0586-z]

Spectrally accurate space-time solution of Hamiltonian PDEs

Brugnano, Luigi
;
2019

Abstract

Recently, the numerical solution of multi-frequency, highly oscillatory Hamiltonian problems has been attacked by using Hamiltonian boundary value methods (HBVMs) as spectral methods in time. When the problem derives from the space semi-discretization of (possibly Hamiltonian) partial differential equations (PDEs), the resulting problem may be stiffly oscillatory, rather than highly oscillatory. In such a case, a different implementation of the methods is needed, in order to gain the maximum efficiency.
2019
81
1183
1202
Brugnano, Luigi; Iavernaro, Felice; Montijano, Juan I.; Rández, Luis
File in questo prodotto:
File Dimensione Formato  
Brugnano2018_Article_SpectrallyAccurateSpace-timeSo.pdf

Accesso chiuso

Descrizione: reprint editoriale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 905.8 kB
Formato Adobe PDF
905.8 kB Adobe PDF   Richiedi una copia
1807.08421.pdf

accesso aperto

Descrizione: versione accettata
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 337.32 kB
Formato Adobe PDF
337.32 kB Adobe PDF
numa 81 (2019) 1183-1202.pdf

Accesso chiuso

Descrizione: reprint editoriale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1133259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 38
social impact