The homoleptic mononuclear compound [Co(bpp-COOMe)(2)](ClO4)(2)(1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)(2)](ClO4)(2)(2) afforded the derivative [Zn0.95Co0.05(bpp-COOMe)(2)](ClO4)(2)(3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.
A Pseudo-Octahedral Cobalt(II) Complex with Bispyrazolylpyridine Ligands Acting as a Zero-Field Single-Molecule Magnet with Easy Axis Anisotropy / Rigamonti, Luca*; Bridonneau, Nathalie; Poneti, Giordano; Tesi, Lorenzo; Sorace, Lorenzo; Pinkowicz, Dawid; Jover, Jesus; Ruiz, Eliseo; Sessoli, Roberta; Cornia, Andrea. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - STAMPA. - 24:(2018), pp. 8857-8868. [10.1002/chem.201801026]
A Pseudo-Octahedral Cobalt(II) Complex with Bispyrazolylpyridine Ligands Acting as a Zero-Field Single-Molecule Magnet with Easy Axis Anisotropy
Tesi, Lorenzo;Sorace, Lorenzo;Sessoli, Roberta;
2018
Abstract
The homoleptic mononuclear compound [Co(bpp-COOMe)(2)](ClO4)(2)(1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)(2)](ClO4)(2)(2) afforded the derivative [Zn0.95Co0.05(bpp-COOMe)(2)](ClO4)(2)(3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.File | Dimensione | Formato | |
---|---|---|---|
Chem_Eu_J_2018.pdf
Accesso chiuso
Descrizione: Chem_Eu_J_2018
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.