Classifying observations coming from two different spherical populations by using a nonparametric method appears to be an unexplored field, although clearly worth to pursue. We propose some decision rules based on spherical kernel density estimation and we provide asymptotic L2 properties. A real-data application using global climate data is finally discussed.

Kernel density classification for spherical data / Di Marzio M., Fensore S., Panzera A., Taylor C.C.. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - STAMPA. - (2019), pp. 23-29. [10.1016/j.spl.2018.07.018]

Kernel density classification for spherical data

Panzera A.;
2019

Abstract

Classifying observations coming from two different spherical populations by using a nonparametric method appears to be an unexplored field, although clearly worth to pursue. We propose some decision rules based on spherical kernel density estimation and we provide asymptotic L2 properties. A real-data application using global climate data is finally discussed.
2019
23
29
Di Marzio M., Fensore S., Panzera A., Taylor C.C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1134065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact