In this work we propose a combined TCAD and Geant4 simulated based numerical model approach to study of the active electrical behavior of 3D diamond sensors with graphitic parallel columns/trenches contact scheme in those radiation detection applications ruled by stringent timing and radiation-tolerance requirements. Single particle hit effects can be realistically assessed in Geant4 simulations describing properly the energy deposition along its path. Such information represents the input to the TCAD tools for analyzing the detectors active response depending on bias, particle type, energy and impact direction. Different contact geometries and transport effects have been accounted for with the equivalent load effect of graphitic columns in mixed-mode simulations for the device performance optimization.

Combined TCAD and Geant4 simulations of diamond detectors for timing applications / Morozzi, A.*; Passeri, D.; Vecchi, S.; Servoli, L.; Sciortino, S.. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - STAMPA. - (2018), pp. 1-3. [10.1016/j.nima.2018.07.091]

Combined TCAD and Geant4 simulations of diamond detectors for timing applications

Sciortino, S.
2018

Abstract

In this work we propose a combined TCAD and Geant4 simulated based numerical model approach to study of the active electrical behavior of 3D diamond sensors with graphitic parallel columns/trenches contact scheme in those radiation detection applications ruled by stringent timing and radiation-tolerance requirements. Single particle hit effects can be realistically assessed in Geant4 simulations describing properly the energy deposition along its path. Such information represents the input to the TCAD tools for analyzing the detectors active response depending on bias, particle type, energy and impact direction. Different contact geometries and transport effects have been accounted for with the equivalent load effect of graphitic columns in mixed-mode simulations for the device performance optimization.
2018
1
3
Morozzi, A.*; Passeri, D.; Vecchi, S.; Servoli, L.; Sciortino, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1134740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact