Looking for available parking slots has become a serious issue in contemporary urban mobility. The selection of suitable car parks could be influenced by multiple factors - e.g., the walking distance to destination, driving and waiting time, parking prices, availability, and accessibility - while the availability of unused parking slots might depend on parking location, events in the area, traffic flow, and weather conditions. This paper presents a set of metrics and techniques to predict the number of available parking slots in city garages with gates. With this aim, we have considered three different predictive techniques, while comparing different approaches. The comparison has been performed according to the data collected in a dozen of garages in the area of Florence by using Sii-Mobility National Research Project and Km4City infrastructure. The resulting solution has demonstrated that a Bayesian regularized neural network exploiting historical data, weather condition, and traffic flow data can offer a robust approach for the implementation of reliable and fast predictions of available slots in terms of flexibility and robustness to critical cases. The solution adopted in a Smart City Apps in the Florence area for sustainable mobility has been welcomed with broad appreciation or has been praised as successful.

Predicting Available Parking Slots on Critical and Regular Services by Exploiting a Range of Open Data / Badii, Claudio; Nesi, Paolo*; Paoli, Irene. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 6:(2018), pp. 44059-44071. [10.1109/ACCESS.2018.2864157]

Predicting Available Parking Slots on Critical and Regular Services by Exploiting a Range of Open Data

Badii, Claudio;Nesi, Paolo;Paoli, Irene
2018

Abstract

Looking for available parking slots has become a serious issue in contemporary urban mobility. The selection of suitable car parks could be influenced by multiple factors - e.g., the walking distance to destination, driving and waiting time, parking prices, availability, and accessibility - while the availability of unused parking slots might depend on parking location, events in the area, traffic flow, and weather conditions. This paper presents a set of metrics and techniques to predict the number of available parking slots in city garages with gates. With this aim, we have considered three different predictive techniques, while comparing different approaches. The comparison has been performed according to the data collected in a dozen of garages in the area of Florence by using Sii-Mobility National Research Project and Km4City infrastructure. The resulting solution has demonstrated that a Bayesian regularized neural network exploiting historical data, weather condition, and traffic flow data can offer a robust approach for the implementation of reliable and fast predictions of available slots in terms of flexibility and robustness to critical cases. The solution adopted in a Smart City Apps in the Florence area for sustainable mobility has been welcomed with broad appreciation or has been praised as successful.
2018
6
44059
44071
Badii, Claudio; Nesi, Paolo*; Paoli, Irene
File in questo prodotto:
File Dimensione Formato  
08430514 (1).pdf

accesso aperto

Descrizione: Predicting Available Parking Slots on Critical and Regular Services by Exploiting a Range of Open Data
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 3.07 MB
Formato Adobe PDF
3.07 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1135087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 66
social impact